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Abstract

This paper proposes a theory of intermediation that explains the existing fi-

nancial network with a few highly interconnected institutions. In contrast to the

previous trading models based on random matching or exogenous networks, we al-

low institutions to choose their counterparties and the number of trading links in

a dynamic framework. We show that banks with lower risk exposure endogenously

specialize in the role of intermediary, forming the core of the network. Moreover,

such a highly asymmetric structure is in fact efficient. This tractable framework fur-

ther allows us to derive normative implications, taking into account the endogenous

response of financial markets.
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1 Introduction

The financial architecture typically involves a few highly interconnected financial insti-

tutions. Such a structure plays a central role in the financial system, and after the 2008

financial crisis, it also became the target of many policy reforms. Nevertheless, partly

because of its complexity, the question of why such a structure arises in the first place

remains poorly understood. Yet, without understanding the economics behind it, eval-

uating how financial markets respond to any policy instrument is impossible; and thus

policy prescriptions may have unintended consequences.

In this paper, we develop a tractable model to address this question. All financial

institutions are endogenously linked to one another via decentralized trading activities.1

By explicitly allowing banks to optimally choose their counterparties, we depart from

existing models on decentralized exchanges, in which trading links are either random or

exogenously given. We show that this highly complex and asymmetric structure that we

have often observed corresponds to a decentralized form of liquidity insurance. Moreover,

and importantly, in contrast to the existing works on financial stability that take the

trading network as given,2 we are able to derive normative implications, taking into

account the endogenous response of the trading network. Thus, our contribution is a

framework that allows for a formal cost-benefit analysis of varied policy prescriptions.

Our setup captures two key features of decentralized markets. First, all trades are

bilateral. Second, information frictions prevent banks from perfectly locating the right

counterparty. Both features are standard assumptions in the existing models based on

random search (starting from Duffie et al. (2005)[15]). However, rather than assuming

that banks meet randomly at some exogenous rate, we explicitly model information fric-

tion by assuming that banks need to make the contact in order to find out the other

party’s desirable position (i.e., the party’s valuation). For example, when a bank wants

to borrow as a result of liquidity shocks, the bank would need to contact another coun-

terparty to find out the other’s willingness to lend.

The key equilibrium object is the link formation decisions based on observable char-

acteristics. The heterogeneity on which we focus involves the riskiness of banks’ asset

positions, modeled as the volatility of their valuations over their assets. That is, when a

bank considers whom to contact, it knows which bank has a higher exposure to risk. In

1Such trading activities can be spot transactions, borrowing and lending, or trading derivatives con-
tracts.

2A growing literature focuses on the role of the architecture of financial systems as an amplification
mechanism. For example, Allen et al. (2000)[6], Acemoglu et al. (2014)[1], Elliott et al. (2014)[18],
Cabrales et al. (2014)[12], and Gofman (2014) [24] study the financial contagion in given networks.
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other words, this type of bank can be very eager to reach the opposite position with some

probability. For example, a small, local bank has a higher exposure to liquidity risks

compared with a bank with multiple branches. On the other hand, banks that have a

more stable position (we think of these institutions as having more diversified portfolios)

are the ones with lower risk-sharing needs, and thus lower needs for trade ex ante.3

Our setup allows for any bank to contact multiple banks sequentially. Specifically, we

build a dynamic trading model with multiple rounds of bilateral trade. Each bank can

choose to contact (or match with) one bank for each round, and the banks then agree on

the terms of trade that are contingent on the valuation within the pair. The matching

decision must be pairwise stabile in equilibrium. One technical contribution of this paper

is that it applies the matching literature to a dynamic trading environment. By doing

so, we contribute a novel and tractable framework for network formation.4

We show that the heterogeneous risk exposure of an institution leads to different trad-

ing activities: institutions that have the lowest risk-sharing needs endogenously specialize

in an intermediary role. They behave like market makers in equilibrium: they take a posi-

tion opposite to the banks with higher risk exposure, regardless of their own preferences.

These banks become most connected and have the highest gross trade volume, thereby

forming the core of the network.

Institutions with the highest risk exposure behave as though they are customers: they

obtain their desirable position by contacting one intermediary, without the need to contact

others. Institutions with moderate exposure then behave like periphery dealers: they take

on the misallocation from customers in earlier periods and later unload their position on

the core dealers. Consistent with recent empirical studies, this model predicts that the

distribution of trading activity is highly skewed, with only a few institutions acting like

intermediaries for a large amount of trade. It also generates a core-periphery network

with a multi layered hierarchy: certain intermediaries are more connected than others.5

Since the role of intermediaries emerges endogenously, our results thus provide an

answer to why decentralized markets often involve active intermediaries. That is, why do

institutions with higher risk-sharing needs (i.e., customer banks) not contact each other

directly, cutting out the middlemen? The intuition is simple: trading friction suggests

3In the appendix, we show how the degree of diversification can be mapped to the heterogeneity in
volatility. Note that our prediction on the structure remains intact even without ex ante heterogeneity,
which simply maps to a special case with degenerate distribution.

4Our dynamic framework can itself be applied generally to environments with different types of
heterogeneity. Nevertheless, we focus on this particular type throughout the paper.

5Li and Schurhoff (2011)[33] and Bech and Atalay (2010)[11] document the hierarchical core-periphery
structure in the municipal bond and federal funds market, respectively. Both show that the distribution
of dealer connections is heavily skewed with a fat right tail populated by several core dealers.
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that misallocation is inevitable within a matched pair. Banks with stable valuation, on the

other hand, have the comparative advantage of bearing the costs from asset misallocation.

Trading through a stable type of bank guarantees that the bank with higher risk-sharing

needs reach their efficient allocation earlier, maximizing aggregate output in the economy.

The endogenous link formation decisions have important welfare implications. We

show that such a highly skewed financial architecture is indeed efficient subject to the

underlying friction. In the decentralized equilibrium, the price will then simply adjust to

implement this efficient outcome.

Our results thus shed light on the policy discussion regarding banks that are “too

interconnected”. In particular, we use our framework to address two common questions.

First, to what extent does losing such a central player affect asset allocation within the

financial system? We answer this question by looking at the social value that is generated

by this bank, taking into account the market’s endogenous response when this bank exits.

We establish that, although such a loss leads to a higher delay cost for other market

participants, the market is in fact resilient in the sense that all the trading links will be

rebuilt and the bank with this central role will be endogenously replaced by another bank.

This is in sharp contrast to a model that assumes exogenous trading links or superior

trading technology of these cores. In those environments, one would easily exaggerate

such a loss.

The second question is, in an environment with potential contagion risks, should

regulators aim to reduce interconnectedness? Motivated by the existing (and growing)

literature on financial contagion,6 we thus introduce counterparty risk into our framework

as a potential cost of interconnections. One unique advantage of our framework is that

we can analyze how the underlying network responds to such a policy. As a result, we

can quantity both the efficiency loss and possible benefits from preventing contagion,

providing a formal cost-benefit analysis.

In this highly asymmetric structure, a higher level of interconnectedness will not

exacerbate contagion when the initial loss to the financial system is not too large.7 In

that regime of shocks, such a policy necessarily leads to an efficiency loss but no benefit.

Hence, this policy can be justified only with large negative shocks. On the other hand, this

structure itself is efficient absent counterparty risks: our results immediately suggest that

6See Allen and Babus (2009)[5] and to Glasserman and Young (2015)[22] for recent surveys of the
literature regarding financial contagion in networks. This literature focuses on the cost (i.e., contagion)
of given networks.

7Similar analytical results have been derived in various settings. See, for example, Acemoglu et al.
(2014)[1] and Elliott et al. (2014)[18].
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a policy that restricts market-making activities will be dominated by other policies that

target decreasing contagion risks directly. For example, one can use capital requirements

to conservatively buffer risks or require institutions to net out their positions.

Related Literature Modeling over-the-counter (OTC) markets has two main ap-

proaches. The first is based on a random search model, in which counterparties arrive

only at an exogenous rate (see Duffie, Garleanu, and Pedersen (2005)[15], Lagos and

Rocheteau (2009)[30], Afonso and Lagos (2014)[4], and Hugonnier, Lester, and Weill

(2014)[27]). The other approach is based on an exogenous network structure in OTC

markets (e.g., Gofman (2011)[23], Babus and Kondor (2012)[10], and Malamud and Ros-

tek(2012) [34]). Our main contribution to the literature on OTC markets is that we

develop a framework that allows matching to be based on ex ante characteristics of banks

and that generates an endogenous trading structure.

One reason why it is desirable to endogenize the meeting process is that, as many

have argued, random matching is an unrealistic feature of asset markets. One may

counter that random matching is a tractable or reduced-form way to model frictions. In

fact, we show that predictions of the random search model regarding the trading volume

at the aggregate level remain robust. In particular, Afonso and Lagos (2014)[4] and

Hugonnier, Lester, and Weill (2014)[27], show that agents with moderate valuations play

an intermediary role as they buy and sell over time when randomly matching with others.

Hence, despite the trading links being random, trading volume will be endogenously

concentrated among these investors. A new framework developed by Atkeson, Eisfeldt,

and Weill (2014)[7] also delivers similar empirical predictions. In that framework, all

banks match with each other, and large banks endogenously become dealers in the sense

that they have the highest gross notional trade volume.8

The individual behaviors of banks and welfare implications are very different, how-

ever. Our model endogenously generates heterogeneous meeting rates for different banks.9

Banks who build more trading links than others stay in the core, and as such, their role

as market makers is persistent. This overcomes a common empirical shortcoming of the

random search model. Moreover, the surplus division rule, which is a free parameter in

the random search model, is also determined in equilibrium in our framework. That is,

the bid-ask prices provided by market-making banks must be attractive enough to prevent

8Although we do not explicitly model bank size, one can interpret large banks as having more diver-
sified portfolios and therefore having less exposure to shocks to their preference. We provide details for
this connection in Section A.2.

9Our model thus provides a microfoundation for Neklyudov (2014)[35], who analyzes an environment
in which banks are endowed with heterogeneous search technologies in a random search framework.
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customer banks from contacting each other. Hence, in our model, it is indeed optimal

for customer banks to contact dealer banks directly. Because of the endogenous match-

ing plan and the endogenous bargaining power, the equilibrium allocation is constrained

efficient. Random matching necessarily leads to a welfare loss.

One technical contribution of this paper is that it applies the matching literature to

a dynamic trading environment.10 The dynamic framework is important for two reasons.

First, it allows us to analyze asset allocations and prices over time and across banks of

different centrality. More important, the number of periods that a bank actively contacts

a counterparty, instead of staying in autarky, resembles the number of trading links that

a bank builds (i.e., the bank’s trading rate in equilibrium). In other words, the model

predicts which banks will become the most connected.

Hence, this dynamic framework of pairwise matching also provides a new and tractable

approach to studying network formation (see Jackson (2005)[28] for a detailed literature

review). Regarding the literature in this line, our framework is related to the ones that

study network formation in asset markets (e.g., Babus and Hu (2015)[9], Hojman and

Szeidl(2008)[25], Gale and Kariv(2007)[20], and Farboodi (2014)[19]). These frameworks

focus on different frictions and predict different trading structures.11 We are the first

paper that explains the existing core-periphery structure with multilayered hierarchy as

a robust feature of many interbank markets. And the novel prediction is that financial

institutions that have lower exposure to risk become the core of a network endogenously.

Moreover, in spite of the network structure, our dynamic framework is highly tractable

and admits an analytical solution.

2 An Illustrative Example

In this section, we illustrate the key force of our model with minimal ingredients. Consider

four banks. All of them are endowed with one unit of an asset, can hold up to two units,

and can trade assets with numéraire goods. Two banks are subject to some risks, so

that their marginal valuation over the asset can be either -1 or 1. For simplicity, one can

10Most works in this vein involve static frameworks. One notable exception is Corbae et al. (2003)[14],
who introduce directed matching to the money literature in a setting without heterogeneity ex ante. They
use this framework to study the relationship between trading history and matching decisions. Duffie,
Qiao and Sun (2015)[16] provide mathematical foundation for our analysis.

11Both Babus and Hu (2015)[9] and Hojman and Szeidl(2008)[25] predict a star structure in order to
overcome information frictions and minimize the costs of building links. Farboodi (2014)[19] looks at the
interbank lending market and considers two types of banks: banks that make risky investments over-
connect, and banks that mainly provide funding end up with too few connections, a result of bargaining
frictions.
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imagine that this value is given by equal probability for both banks (i.e., no correlation).

More generally, let p denote the probability that these two banks have opposite valuations.

The other two banks, on the other hand, have zero exposure to this shock and their

valuation is always zero.

Suppose that all banks can choose to contact (match with) one counterparty (i.e., one

trading round only). They can see each other’s realization once they make the contact,

and then trade the assets accordingly. Figure 1 illustrates the expected surplus within

the pair in this simple example: when two extreme types match, with probability p, they

have the opposite valuation and realize a gain from trade of 2. Hence, the pairwise surplus

between two extreme types is given by 2p. On the other hand, when an extreme type

matches with a stable type, the gain from trade within this pair is always 1.

Figure 1: Expected surplus for four-bank example.

Efficient Matching Figure 1 immediately shows that, for any p < 1, matching extreme

types with stable types leads to a higher aggregate surplus than letting the same type of

bank match with each other (1 + 1 > 2p+ 0). Matching extreme types among themselves

necessarily implies that they have to take on costly misallocation, which happens when

they happen to have the same valuation. On the other hand, matching extreme types

with stable types guarantees that both extreme types always receive their efficient allo-

cation, minimizing the expected loss from misallocation. The same intuition holds more

generally: the relatively stables have a comparative advantage to take on misallocation,

providing insurance against such shocks. In Section 4, we generalize this result for a

continuum of types and for multiple trading rounds (i.e., each bank can contact N banks

sequentially).
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Price Competition In a static environment with transferable utility, it is well known

that the decentralized equilibrium will implement the efficient outcome. This can easily be

seen from the example in Figure 1. Note that as long as the shocks are weakly negatively

correlated (p > 1
2
), an extreme type is a better counterparty for another extreme type in

the sense that they can generate a higher pairwise surplus. If two extreme types match

with each other, however, each of them can receive a value of p. A stable bank can then

offer a value of p+ε to an extreme type and receive a value of 1−(p+ε). Hence, given that

p < 1, there exists ε > 0 such that all banks are better off. With multiple trading rounds,

we then solve for the dynamics of asset prices that implement the efficient allocation

(Section 5). Those prices can be interpreted as bid-ask prices charged by the stable type,

who acts like a market maker, providing immediacy to customers and being compensated

by a positive bid-ask spread.

3 Model

There is a continuum of banks of total measure 1. There are N trading rounds, modeled

as N periods. To fix this idea, the model can be interpreted as trading within a trading

day. The number of periods, N , thus represents the trading frequency (possible trading

rounds) within a day. There are two types of consumption goods: general goods and

dividend goods. The dividend goods are attached to the asset. The asset is in fixed

supply of A/2. The dividend flow of an asset at period t is κt, κt ∈ R+.

Preferences and endowment The period 0 expected payoff for a bank is

E0

N∑
t=1

βt (εvσκtat + τt) ,

where β is the discount factor, at is the period t asset holding, τt is the period t general

good consumption and εvσ is the marginal valuation over the dividend. β ∈ (0, 1), at ∈
{0, A}. The variable εvσ is a random variable realized at the beginning of period 1, which

is equal to y+σ if v = H and y−σ if v = L. The realization stays throughout the whole

trading game. One-half of the bank population is endowed with A units of the asset.

The volatility of the bank’s marginal valuation over the dividend, represented by σ,

may be heterogeneous. The measure of banks with volatility type no greater than σ is

denoted G(σ). The distribution function, G(·), has support [σL, σH ] ⊂ R+. The hetero-

geneity in exposure to valuation uncertainty captures heterogeneous levels of diversifi-
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cation of the portfolios of financial institutions because of their business specialization.

Banks with more diversified portfolios are less exposed to the uncertainty.12

The marginal valuation may also be correlated across banks via different business

models.13 To model this heterogeneity, we assume that there are two groups of banks,

group R and group B, and the marginal valuation may be more negatively correlated

across groups. Formally, denote the probability that banks in group k ∈ {R,B} have

valuation v to be πvk, and let π ≡ πHR = 1− πHB ∈ (0, 1). By construction, the probability

of two banks having the opposite realization across groups is weakly larger than the one

within group, given that πHR π
L
B + πHR π

L
B = π2 + (1 − π)2π2 ≥ πHR π

L
R + πHB π

L
B = 2π(−π).

The equality holds when π = 1/2, which represents the i.i.d. case.14

Network formation and the dynamic matching plan We assume that at any

point in time, each bank can contact only one counterparty. With N periods, each

can contact N other banks sequentially. The network formation problem is therefore

formalized as a dynamic bilateral matching problem. The bilateral matching decision

captures the fact that trading is bilateral in the OTC market.

Another key feature of the decentralized market is the need to locate the “right”

counterparty, and such a process is subject to information frictions. To capture the

information friction, we assume that a bank can observe the realized valuation of its

counterparties only after the matching decisions are made. Formally, we assume that the

trading links cannot be contingent on others’ realized preferences, and thus the matching

plan can be contingent only on observable characteristics, including the volatility type

σ, period t asset holding at and group k. Denote the observable type to be z. z ∈ Z =∑
×{0, A} × {R,B}.15

These two features of the OTC market are essential. If everyone can observe others’

preferences perfectly, one can immediately trade with the “right” counterparty. If trading

takes place in a centralized market, there is no need to search for a counterparty. In either

12In Section A.2, we show the mapping between the volatility type and the degree of the diversification
of a financial institution.

13For example, money market mutual funds are usually liquidity providers, whereas loan originators
demand liquidity.

14Further details of the correlation are left in the Appendix.
15If a bank has no assets at period t, he will match only with a bank with A units of the asset. In this

way, the only uncertainty affecting the matching decision is the realized preferences of banks. If matching
decisions cannot be contingent on asset holdings, this will simply introduce additional uncertainty into the
economy in the sense that banks cannot realize the gain from trade either because neither of them have
assets or because both of them have reached their capacity. By assuming asset positions are observable,
we omit this additional uncertainty. Since we assume that the asset position is observable, the asset
position could potentially be used as a signaling device. To assume away this additional complexity, we
maintain the restriction on the asset holding at ∈ {0, A}.
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case, the market implements the first-best allocation: banks with high realizations end

up with A units of assets, and banks with low realizations sell their assets.

The dynamic matching plan describes the matching outcome between banks in the

whole economy. It characterizes the matching assignment in each period. The period t

assignment is characterized by the allocation function, ft(z, z
′) : Z∪{∅}×Z∪{∅} → R+.

The period t allocation function is a density function that measures the set of banks

assigned to either another set of banks or no one, denoted as being assigned to the

empty set. Because this is a one-sided matching problem, the allocation function must

be symmetric. Although the matching plan is not contingent on the realized marginal

valuations of banks, it can be optimal ex post. In the decentralized equilibrium, we

characterize the solution that is also subject to traders’ ex post incentives as well.

The terms of trade within a match When two banks agree to match, they also

agree on the contract that specifies the term of trade, which includes the asset allocation

and transfers contingent on the preference realizations within the pair. This undying

agreement thus determines the payoff for each bank.

Denote the period t terms of trade in a match between a bank of observable type

z and a bank of observable type z′ to be ψt(z, z
′). It specifies the asset allocation

αt ((v, z) , (v′, z′)) and the transfer τt ((v, z) , (v′, z′)) to type z bank, when the preference

realizations of type z bank and type z′ bank are v and v′, respectively. v, v′ ∈ {L,H}.
αt (·, ·) ∈ {0, A}. The transfer τt (·, ·) ∈ R is denominated in general goods. The terms

of trade are feasible if the transfers contingent on the realized marginal valuation sum to

zero and the total asset allocation equals the total asset holding of the two banks. Denote

C(z, z′) to be the set of feasible contracts within the match.16

Feasibility of the matching plan A matching plan is feasible if the corresponding

allocation functions for all periods are feasible and consistent with each other. Formally,

the following condition must be satisfied,

ˆ
z̃∈Z

ft(z, z̃)dz̃ + ft(z, {∅}) =
∑
v

ht (v, z) , for all z ∈ Z, t ∈ {1, . . . , N}, (1)

where ht(v, z) denotes the period t density function of banks.

The consistency of allocation functions requires the density function, ht(v, z), to follow

the endogenous law of motion, which depends on the asset allocation rule specified in the

16The feasibility of the within-match asset allocation implies that αt ((v, z) , (v′, z′)) +
αt ((v′, z′) , (v, z)) = A.
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terms of trade for all matches. So, the feasibility of the matching plan depends on the

terms of trade. Denote the probability of the marginal valuation being v conditional on

observable characteristics to be πvt (z) = πv1(a, σ, k). πvt (z) ∈ [0, 1]. Since the matching

plan is not contingent on other banks’ marginal valuation, this probability is given by the

ex ante distribution prior to trading at period 1. πv1(z) ≡ πvk. For any period t ≥ 2, this

probability is determined by the trading history and the evolution of asset distribution.

The density function ht+1(·) and the conditional probability πvt+1(·) are characterized

recursively by the following equations:

πvt+1(z) =
ht+1 (v, z)∑

ṽ∈{L,H} ht+1 (ṽ, z)
, (2)

ht+1 (v, a, σ, k) =
∑
â

πvt (â, σ, k)


ˆ
z′

∑
v′∈{H,L}

πv
′

t (z′)

Pr [αt ((v, â, σ, k) , (v′, z′)) = a] ft (z′, (â, σ, k)) dz′

}
, (3)

where αt ((v, â, σ, k) , (v′, z′)) is given by ψt(z, z
′).

Consider a bank of type (â,σ, k) with valuation v who matches with a bank of type

z′ at period t. The probability that the bank has asset position a in the next period

depends on the preference realization of the bank’s counterparty, v′, which is given by∑
v′∈{H,L} π

v′
t (z′)Pr {αt ((v, â, σ, k) , (v′, z′)) = a}. Hence, the integral in equation (3) rep-

resents the probability that a bank of type (â,σ, k) with valuation v switches to asset

position a next period, given all the matching decisions ft (z′, (â, σ, k)) . The initial dis-

tribution is

h1 (v, a, σ, k) =
1

2
πv1(a, σ, k)g(σ). (4)

Therefore, a matching plan is feasible if and only if the corresponding matching assign-

ment functions ft(·, ·), the terms of trade for all matches, and the density function ht(·)
satisfy equations (1), (2), (3), and (4).

4 Constrained Efficient Network

The planner maximizes total surplus by choosing (1) the matching rule for each pe-

riod matching rule ft conditional on observable information and (2) asset allocation

αt ((v, z) , (v′, z′)) within each match, subject to the same constraints faced by banks.

That is, the matching rule and the asset allocation must be feasible. The objective

11



function of the planner is

N∑
t=1

βtκt
∑

v,v′∈{L,H}

ˆ ˆ [
πvt (z)εvσαt ((v, z) , (v′, z′))

+πv
′

t (z′)εv
′

σ′αt ((v′, z′) , (v, z))
]
ft(z

′, z)dzdz′. (5)

Note that, although the matching decision is multidimensional in our setting, Z =∑
×{R,B} × {0, A}, it is neither optimal to match banks within groups (since across-

group matching implies a higher surplus) nor optimal to match banks with the same asset

position (since there is no trading surplus). Hence, the matching problem can be reduced

to a one-dimensional problem in which the key variable is the volatility type. Below, we

proceed to solve the model with this implicit knowledge.

One Round of Trade (N = 1) Conditional on matching, the optimal asset allocation

within the pair necessarily moves the asset to the one with higher realization. This rule

thus implies that the optimal asset allocation must reflect the preference of the more

volatile type within the pair: the more volatile type receives the asset whenever it has

a high realization and sells the asset whenever it has a low realization, regardless of

the preference of the less volatile type. Consider matching pair z′ = (σ′, A, k′) and

z = (σ, 0, k), where σ′ ≥ σ. Since the belief is simply given by the prior, with probability

πHk′ , the bank z′ has a high valuation and must own the asset. In words, this bank obtains

its efficient allocation, which is given by πHk′ (y + σ′)A.

With probability 1−πHk′ , the bank z′ has a low valuation and thus the less volatile bank

z must hold the asset instead. The expected value of bank z is then (1−πHk′ )
(
y + (2πHk − 1)σ)

)
A,

which deviates from the bank’s efficient allocation. This highlights the fact that one can,

at most, guarantee that one of the banks can reach its efficient allocation, and thus

misallocation is inevitable because of limited information.

The loss from bearing misallocation for bank z compared with its efficient position is

then given by17

`(z) ≡ πHk (y + σ)A− (1− πHk′ )
(
y + (2πHk − 1)σ)

)
A

= 2π(1− π)σA.

Observe that such a loss is strictly increasing in σ, which formalizes the intuition in

our four-bank example. Banks with low exposure to uncertainty have a comparative

17Recall that π = πHk = (1− πHk′ ).
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advantage to take on misallocation, since such cost is relatively small. Hence, the optimal

matching rule must satisfy a cutoff rule: there exists a cutoff type σ∗that solves G(σ∗) = 1
2

such that any bank above the cutoff must only match with a bank below the cutoff. By

doing so, all the misallocations are concentrated among the banks with lower exposure

to uncertainty, minimizing the total welfare lost from misallocation. 18

N Trading Rounds The same economics holds for N rounds of trade. Since it is less

costly for the stable types to take on the misallocation, it is efficient to match banks

with low exposure to uncertainty with those with high exposure. In this way, banks

with higher exposure are guaranteed to reach their efficient allocations earlier. In the

Appendix, we show that the planner’s problem can then be reduced to choosing which

banks to reach the first-best allocation in each period according to their volatility type.

The constrained efficient matching plan therefore follows a recursive structure and is

characterized by a time-varying cutoff volatility type that partitions active banks into

two groups each period: customers (relatively volatile types) and market makers (rela-

tively stable types), where the relatively stable types take on the misallocation from the

relatively volatile types. The period t cutoff type, σ∗t , is such that all active banks in

period t are matched. So, G(σ∗t ) = 1
2t

, for t = 1, . . . , N . The equilibrium trading links

are illustrated in Figure 2.

Once a bank has reached its efficient allocation after the trade in period t − 1, it

remains inactive afterward (since there is no gain from trade).19 On the other hand, if

a bank acts like a market maker, who trades based on the others’ preferences at period

t − 1, the probability that such a bank has a high valuation is then simply the same as

before: πHt (z) = πHt−1(z). By construction, banks who remain active up to period t are

the ones taking on misallocation up to period t− 1. Hence, the prior of all the remaining

banks is simply the ex-ante prior, πHt (z) = πHk .

18Note that because of the linear preference, any matching rule that satisfies the cutoff rule can
implement the same aggregate surplus, and thus there is no gain from additional sorting beyond the
cutoff rule. Formally, this is be seen from the the fact that the joint surplus function is weakly submodular
on Σ2 :Ω(z, z′) ≡ πHk′ (y + σ′)A + (1 − πHk′ )

{
πHk (y + σ) + (1− πHk )(y − σ)

}
A. As shown in Legros and

Newman (2002)[31], NAM is an equilibrium outcome, but not the unique one.
19The belief for such a bank is then given by πHt+1(σ,A, k) = 1 and πHt+1(σ, 0, k) = 0. That is, the bank

must have a high valuation if and only if it holds the asset
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Figure 2: Equilibrium trade links, with 6 rounds of trade. A node represents a bank. His
volatility type is given by the distance from the center to the node. The edge between
two nodes represents the link between two banks.

The total expected output of a bank reaching the first-best asset allocation at period

t (and staying inactive afterward) can then be expressed as

ϑ(σ, k, t) ≡
t−1∑
s=1

βsκs(1− πHk′ )(y + (2πHk − 1)σ)A+
N∑
s=t

βsκsπ
H
k (y + σ)A.

The following proposition establishes the property of the constrained efficient allocation,

which shows that banks with larger gains from trade reach their efficient allocations

earlier, and the most stable types stay until the end and face asset misallocations.

Proposition 1 The solution to the social planner’s problem {ft(z, z′), αtαt ((v, z) , (v′, z′))}
must satisfy the following properties: (1) The expected output of a bank (σ, k) is given by

ϑ(σ, k, t∗(σ, k)), where the last period of a bank of type (σ, k) that remains active is given

by

t∗(σ, k) = t ⇔ σ ∈ (σ∗t , σ
∗
t−1] (6)

and t∗(σ, k) = N + 1 for σ ≤ σ∗N . (2) The cutoff type σ∗t is given by G(σ∗t ) = 2−t. Hence,

total welfare is given by
∑

k

´
ϑ(σ, k, t∗(σ, k))dG(σ)

2
.

The dynamics of the network formation have a very simple interpretation. The most

volatile types build only one trading link with a market maker in the first period, and
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this type behaves purely like a customer. The most stable types, on the other hand,

are the most connected dealers, who buy and sell over time based on the valuation of

their customers each period. Banks with midrange volatility act like peripheral dealers in

the sense that they serve customers in earlier periods and then trade with more central

dealers.

5 Decentralized Equilibrium

We now show that, with pairwise stability, there exists an equilibrium in the decentralized

market that implements the constrained efficient allocation. The equilibrium network

structure therefore inherits properties of the constrained efficient allocation. The transfer

that implements such an outcome has a natural interpretation of bid-ask spreads.

5.1 Equilibrium Definition

Given the terms of trade, ψt(z, z̃), the joint payoff for banks of type z and type z̃ in a

match is

Ω̂t(z, z̃, ψt(z, z̃)) =
∑
v,ṽ

πvt (z)πṽt (z̃)
{
κt
[
εvσαt ((v, z) , (ṽ, z̃)) + εṽσ̃αt ((ṽ, z̃) , (v, z))

]
+β
[
W v
t+1 (αt ((v, z) , (ṽ, z̃)) , σ, k) +W ṽ

t+1

(
αt ((ṽ, z̃) , (v, z)) , σ̃, k̃

)]}
,

where W v
t+1(a, σ, k) denotes the continuation value of bank (σ, k) with valuation v ∈

{H,L} who ended up with a ∈ {0, A} units of assets at the beginning of next period,

which depends on banks’ trading decision next period in the equilibrium path. If a type

z bank chooses to match with a type z̃ bank at period t (i.e., ft(z, z̃) > 0) and agrees to

trade according to the terms of trade ψt(z, z̃), then

W v
t (a, σ, k) =


∑

ṽ∈{L,H} π
ṽ
t (z̃) [κtε

v
σαt ((v, z) , (ṽ, z̃)) + τt ((v, z) , (ṽ, z̃))

+βW v
t+1 (αt ((v, z) , (ṽ, z̃)) , σ, k)

]
, if ∃z̃ ∈ ∆(f(z, ·)),

εvσat + βW v
t+1 (at, σ, k) , if ∅ = ∆(f(z, ·)).

Definition 1 Given the initial distribution πv1(a, σ, k), an equilibrium is a payoff function

W ∗
t (·) : Z→ R+, a feasible matching plan ft(z, z

′) : Z×Z∪{∅} → R+ for t ∈ {1, . . . , N},
and the terms of trade ψ∗t (·, ·) : Z×Z→ C for all t ∈ {1, . . . , N}, such that the matching

plan is pairwise stable for the assignment at any period. For any z ∈ Z and z′ ∈ Z ∪ {∅}
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such that ft(z, z
′) > 0,

z′ ∈ arg max
z∈Z∪{∅}

Ωt(z, z̃, ψ
∗
t (z, z̃))−W ∗

t (z), (7)

W ∗
t (z) = max

z̃∈Z∪{∅}
Ωt(z, z̃, ψ

∗
t (z, z̃))−W ∗

t (z̃), (8)

where W ∗
t (z) = Wt(z, ψ

∗(z, z′)) with ψ∗t (z, z
′) ∈ arg maxψ∈C(z,z′) Ωt(z, z

′, ψ(z, z′)) if z′ 6=
{∅}, and Ωt(z, {∅})−W ∗

t ({∅}) is the bank’s payoff without trade.

The gain from trade function Ωt(z, z̃) is given by Ωt(z, z̃) = maxψ∈C(z,z̃) Ω̂t(z, z̃, ψ). A

bank’s expected payoff, given contract ψt(z, z̃), is Wt(z, ψt(z, z̃)) =
∑

v π
v
t (z)W v

t (z) . At

period 0, a bank of type (σ, k) chooses its optimal trading partner z̃ for each period to

maximize the bank’s expected payoff contingent on its asset holding at ∈ {0, A}, taking

the equilibrium payoff of its counterparty as given.

Equation (8) implies that there is no profitable pairwise joint deviation for any period

t in an equilibrium, where W ∗
t (z) represents the expected value of bank z.

5.2 Equilibrium Characterization

We now characterize the transfers in a decentralized equilibrium that implement the

constrained efficient allocation in Proposition 1. That is, in this equilibrium, at any

period t, two banks are matched with each other only if (i) they are in different groups,

(ii) they have different asset holdings, and (iii) a more stable type σ ≤ σ∗t always matches

with a more volatile type σ > σ∗t . Within the pair, the bank exposed to lower uncertainty

acts like a market maker, who buys or sells based on the realized valuation of the bank’s

customer, whereas the more volatile type acts like a customer, reaches his first-best

position, and becomes inactive afterward.

To make sure that a market maker is willing to bear the cost of asset misallocation,

the bank must be compensated by the bid-ask spread. We therefore construct a market-

making equilibrium, where the bank’s payoff depends on the role it chooses to play each

period and solves for the bid-ask spread of the market maker in each group, denoted by

{(qvakt , qvbkt),(qvak′t, qvbk′t)} such that all banks follow the optimal matching rule. In theory,

by assuming full commitment, one only needs to solve for the expected transfer (let

qbkt ≡
∑

v π
v
kq
vb
kt and qakt ≡

∑
v π

v
kq
va
kt denote the expected bid-ask prices, respectively) that

satisfies banks’ ex ante incentive. Below, we solve for the price schedule that also satisfies

banks’ ex post incentives. That is, with this implementation, the role of market making

is not subject to a commitment problem.
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Formally, the role that a bank chooses to play is denoted by ρ ∈ {m, c, ∅}: (i) If a

bank chooses to be a “customer,” ρ = c, it keeps the asset if and only if the bank has a

high realization, pays the ask price charged by the market maker in group k′ if the bank

needs to buy, and receives the bid price if it needs to sell. (ii) If a bank chooses to be a

“market maker,” ρ = m, it trades based on its customer’s valuation at the bid-ask price.

(iii) If a bank chooses to be inactive (ρ = ∅), its asset position remains the same for next

period. Consider a bank of type (σ, k) with valuation v ∈ {H,L} who ends up with A

units of the asset, and let Ŵ v
t (σ,A, k, ρ) denote the payoff when the bank chooses the role

ρ. The gain from being a customer relative to being a market maker can be expressed as

δvt (z) ≡ Ŵt(z, c)− Ŵt(z,m):

δHt (σ,A, k) = AπHk′
[
−qHakt + κt(y + σ)

]
+ βπHk′

[
WH
t+1(σ,A, k)−WH

t+1(σ, 0, k)
]
,

δLt (σ,A, k) = A
[
qbk′t −

(
πHk′ q

La
kt + κtπ

L
k′(y − σ)

)]
+ βπLk′

(
WL
t+1(σ, 0, k)−WL

t+1(σ,A, k)
)
,

where W v
t+1(z) = maxρ Ŵ

v
t+1(z, ρ)). Note that we can express the continuation value of

a bank as W v
t+1(z) = maxρ Ŵ

v
t+1(z, ρ) because we look for the implementation such that

banks’ ex post incentives are also satisfied.20

The trade-off between acting like a customer and acting like a market maker can be

understood as a trade-off between trading probability and trading prices. When a bank

of type z = (σ,A, k) with high valuation (v = H) chooses to be a customer, the bank

simply keeps the asset; on the other hand, if he chooses to be a market maker, it keeps the

asset only when the bank’s customer has a low valuation (at the probability πLk′) and sells

the asset when the bank’s customer has a high valuation (at the probability πHk′ ). In this

case, the bank loses the asset and is compensated by the asking price qHakt , which explains

the expression of δHt (σ,A, k). Similarly, for a bank z = (σ,A, k) with low valuation, being

a customer implies that the bank sells to the market maker at group k′ at the expected

bid price, whereas being a market maker implies that the bank sells at the asking price

qLakt only when he meets a customer with high valuation. Hence, with probability πLk′ , the

market maker fails to sell; therefore, the difference in the continuation value is given by

πLk′
(
WL
t+1(σ, 0, k)−WL

t+1(σ,A, k)
)
.We can derive similar expressions for banks who end

up having zero assets.21

To make sure that banks follow the matching rule, we solve for the bid-ask price

{(qvakt , qvbkt), (qvak′t, q
vb
k′t)} such that, for any t, given the cutoff type σ∗t , this marginal bank

20Otherwise, in general, when the role choice is made ex ante, the expression is given by W v
t+1(z) =

Ŵ v
t+1(z, ρ∗t+1(z)), where ρ∗t+1(z) = arg maxρ

∑
v π

v
t+1(z)Ŵ v

t+1 (z, ρ) .
21See the Appendix for the detailed characterization.
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is indifferent between being a customer and being a market maker:

δHt (σ∗t , 0, k) = δLt (σ∗t , 0, k) = δHt (σ∗t , A, k) = δLt (σ∗t , A, k) = 0, (9)

and, with the following lemma, we show that all banks σ > σ∗t are strictly better off

being a customer, whereas all banks σ < σ∗t are strictly better off being a market maker,

regardless of their realized valuation.

Lemma 1 δvt (σ, a, k) strictly increases with σ, and there exists a solution {(qvakt , qvbkt),
(qvak′t, q

vb
k′t)} to equation (9) that satisfies the following conditions: (1) The bid-ask spread

is the same across groups, qakt − qbkt = qak′t − qbk′t ≡ St; and (2) the spread satisfies the

following intertemporal equation:

St = κtσ
∗
t +

1

2
βSt+1, (10)

where SN = κNσ
∗
N .

Lemma 1 guarantees that, at any period, a bank acts like a market maker if and only

if its volatility type is below the marginal type σ∗t . A bank that acts as a customer at

period t reaches its first best at that period and become inactive afterward.

The ex ante payoff of a bank at period 0 (i.e., before the realization of valuation and

asset position) in this constructed market-making equilibrium can be understood as the

sum of the bank’s expected asset position plus the net transfer that it receives over time.

The expected net transfer to a bank that acts like a market maker for period t − 1 and

becomes a customer at period t is given by T (t) ≡ π(1 − π)
(∑t−1

j=1 β
jSjA− βtStA

)
.

One can show that the expected transfer is increasing in t. Hence, in the constructed

market-making equilibrium, a bank’s ex ante expected payoff at t = 0 can be understood

as

W̄ (σ, k) = max
t
{ϑ(σ, k, t) + T (t)} . (11)

That is, the earlier a bank chooses to be a customer, the earlier that the bank reaches

its first-best position, which implies a higher output (as ϑ(σ, k, t) is increasing in t) but a

lower net payment (as T (t) is decreasing in t). Clearly, t∗(σ, k) ≡ arg maxt {ϑ(σ, k, t)) + T (t)}
satisfies Proposition 1. That is, the constrained efficient allocation can be implemented

by letting more stable types receive higher expected revenue from market making and

bear the cost of asset misallocation longer.
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Proposition 2 There exists a decentralized equilibrium that is constrained efficient, where

the expected payoff of a bank is given by equation (11).

6 Empirical Predictions

In this section, we establish our empirical predictions on trading patterns and asset prices

in OTC markets and link them to the empirical evidence. Furthermore, since trading

frictions aim to provide microfoundations to frictions in random search models (Duffie et

al. (2005)[15]), we also compare our implications across these two types of models.

6.1 Trading Activity

The equilibrium trading pattern suggests that a bank with relatively stable preferences

(which does not need to trade ex ante) builds most trading links and intermediates a

large volume of trades. That is, the bank buys and sells over time. Hence, our model

predicts that trade volume will be concentrated among these banks, who endogenously

act as dealers. To see this, we look at two measures below: trading links and trading

volume.

Trading Links The number of periods that a bank actively contacts a counterparty

(instead of staying in autarky) resembles the number of trading links that the bank has,

denoted by L(σ).22 In equilibrium, a bank of volatility type σ ∈ [σ∗t , σ
∗
t−1] creates a trading

link, as a market maker with a customer, for each period from period 1 to period t− 1.

For period t, the bank creates a link as a customer with a market maker, reaching the

bank’s efficient allocation and remaining inactive afterward. Hence, for all banks of type

σ ≥ σ∗N , the number of links effectively maps to the period that a bank has reached its

efficient allocation, which is characterized by equation (6). That is, L(σ) = t∗(σ, k) for

σ ∈ [σ∗N , σH ]. The most stable types σ < σ∗N always build the maximum links N, so

L(σ) = N.

Trade Volume Developing a trading link does not mean there must be trade through

the link. At period 1, trades happen only if the one with a higher valuation within

the pair is not endowed with the asset, which happens with half probability. Therefore,

the trading volume is 1
2
A at t = 1. For any period t onward, trades happen only if the

22We omit observable characteristics other than the volatility type in the notation to simplify presen-
tation, because the equilibrium number of trading links does not depend on other observables.
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customer in period t has not yet reached its efficient allocation. This event happens when

this bank sells (purchases) the asset even when the bank has a high (low) valuation in the

previous period because the bank’s customer wants to buy (sell). Hence, trade happens

at probability 2π(1 − π), which is the probability that banks in different groups have

the same realization. Hence, the intraday dynamics of the aggregate trade volume are

Vt = 22−tπ(1− π)A for t > 1. In other words, the dynamics have the following features:

(1) the trading volume decreases over time, as more assets have been reallocated to banks

with high preference realization, and (2) the trading volume for any period t (i.e., the

need for reallocation) decreases when the preferences of two groups are more negatively

correlated.

The cross-sectional behavior, on the other hand, can be understood from the expected

gross trade volume for banks of type σ, which is denoted by V(σ) and is given by

V(σ) =

1
2
A, ∀σ ∈ [σ∗1, σH ],[
1
2

+ 2π(1− π)(L(σ)− 1)
]
A, ∀σ ∈ [σ∗N , σ

∗
1].

Clearly, being a bank that builds more links implies a higher expected trading volume,

since the bank buys and sells over time.

These two measures then provide predictions on the distribution of the trading activ-

ity. As a result, consistent with Afonso and Lagos (2014)[3] and Atkeson et al. (2014)[7],

the distribution is skewed, and only a few banks intermediate a large amount of trade in

equilibrium.23

Moreover, since only the relatively stable types are building more links, the skewness

of the distribution increases when the trading rounds increase (N). Formally, the number

of links follows an exponential distribution:

Measure{σ : L(σ) = n} =

 1
2l
, if l = 1, . . . , N − 1,

1
2N−1 , if l = N.

(12)

We define a sparsity of network as the ratio of the average number of links over N, which

can be characterized by ψ(N) =
∑N

i=1
i/N
2i

+ 1
2N
. It is therefore straightforward to show

23Afonso and Lagos (2014)[3] show that, in the federal funds market, the average number of transac-
tions per bank is typically above 75th percentile throughout the sample. In credit default swap markets,
Atkeson et al. (2014)[7] document that the top 25 bank holding companies in derivatives trade dispro-
portionately more than others, and over 95 percent of the gross notional is consistently held by only five
bank holding companies.
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that the sparsity of network ψ(N) is strictly decreasing in N .24

Comparison to the Random Search Model Afonso and Lagos (2014)[4] and

Hugonnier, Lester, and Weill (2014)[27] show that, in an environment in which trad-

ing links are formed randomly and all agents have the same meeting rate, banks with

moderate valuation act like intermediaries endogenously because they are more likely to

trade in both directions given the distribution that they face. Modeling the endogenous

matching decisions, we show that these predictions of the random search model regarding

the trading volume at the aggregate level are robust.

The individual behavior of banks, however, is different. Our model endogenously

generates heterogeneous meeting rates for different banks. Banks that build more trading

links than others stay in the core, and as such, their role as market makers is persistent.

This overcomes a common empirical shortcoming of the random search model.

Note that this result holds even when all banks are ex ante homogeneous in our model,

which is the case if the type distribution is degenerate, G(σ) = I{σ ≥ σ∗}. Our model

thus provides a microfoundation for Neklyudov (2014)[35], who analyzes the environment

in which banks are endowed with heterogeneous search technologies and have two possible

valuations.

6.2 Bid-Ask Spread

In this section, we examine the time-series and cross-sectional predictions on the bid-ask

spread. Recall that the expected spread is the same across groups, denoted by St.

The time-series behavior of the expected spread is governed by the price schedule in

Lemma 1 and can be rewritten as

St = 2κtσ
∗
t︸ ︷︷ ︸

benefit from immediacy

+ βSt+1 − St︸ ︷︷ ︸
change in the net payment

,∀t < N.

Intuitively, two factors are driving the bid-ask spread. The cost of being a customer

at period t is paying the spread, whereas the benefit is reaching the efficient allocation

earlier (which is represented by the first term). The second term represents the change

in the net payment: acting like a customer at period t, a bank saves the spread next

period, but the bank gives up the spread that it would have received as a market maker

this period.

24This can be seen from:ψ(N + 1)− ψ(N) =
∑N
i=1

i/(N+1)−i/N
2i < 0 .
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Hence, the dynamics of the bid-ask spread depend on the benefit from immediacy.

In an environment without benefit from immediacy (by setting β = 1 and κt → 0 and

κN → 1), the exact timing of a bank reaching its efficient allocation does not matter, as

long as the bank can do so before the end of day. Therefore, the total net payment for

any banks except for the most central dealers must be the same: paying the spread St

this period must be the same as paying the spread next period and giving up the spread

this period: St ' St+1 − St. Hence, the bid-ask spread must be increasing over time.

On the other hand, when the benefit from immediacy dominates, banks that reach

the first-best allocation earlier should pay for the additional premium for immediacy. For

example, consider the simple case in which the asset pays constant dividends for each

period κt = κ. One can then show that the bid-ask spread is decreasing over time in this

case. When immediacy becomes more valuable, the time series pattern of the expected

bid-ask spread shifts from an upward-sloping curve to a downward-sloping curve.

The time-series pattern of the expected bid-ask spread can be further mapped to the

cross-sectional distribution of the spread across financial institutions of different central-

ity. If the bid-ask spread is increasing in t, it means the average spread charged by the

more central dealers is higher than the one charged by the periphery dealers. This re-

sult is consistent with the findings in Li and Schürhoff (2014)[33]. On the other hand,

if the spread is decreasing over time, it would then look like the centrality discounted

in Hollifield et al. [26]. We thus provide an explanation for why we might observe dif-

ferent empirical patterns depending on the underlying distribution of trading needs in a

particular OTC market.

Comparison to the Random Search Model Asset prices in a random search frame-

work is given by a weighted value of buyers’ and sellers’ reservation value, and such weight

is given by the bargaining power, which is a free parameter. In our framework, on the

other hand, prices and thus the surplus sharing rule are pinned down endogenously so

that it is indeed optimal for customers to trade with market makers. This force thus

has different price implications. For example, in Hugonnier, Lester, and Weill (2014)[27],

a buyer with higher valuation then pays a higher price on average. This, however, is

not necessarily true in our model: buyers with higher valuation are customers in earlier

periods, who paid the spread in the earlier period. In fact, without a delay cost, they

pay a lower asking price. On the other hand, a buyer with slightly lower valuation (the

peripheral dealer) pays a higher asking price when he leaves the market but profits from

the spreads he charges his customers.
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6.3 The Network Structure

The network graph, as in the standard network literature, can be characterized by an

adjacency matrix.25 One can interpret our model as an intraday trading game. With N

trading rounds in a day, the number of banks (nodes) that are connected is

gt =

[
gt−1 I2t−1×2t−1

I2t−1×2t−1 O2t−1×2t−1

]
,∀t > 1, g1 =

[
0 1

1 0

]
, (13)

where dim(G) = 2N , O2N−1×2N−1 is a zero matrix, and I2t−1×2t−1 is an identity matrix.

In the adjacency matrix, banks that reach their efficient allocation in the earlier period

(i.e., lower t∗(σ, k)) are assigned a higher index. The identity matrix, I2t−1×2t−1 , in matrix

gt represents links formed at period N − t+ 1. At period t, banks with an index number

lower than 2t, who are market makers at period t, form links with banks with index

numbers from 2t−1 + 1 to 2t. This sorting result leads to a zero matrix on the lower right

corner of matrix gt, O2t−1×2t−1 , which reminds us that “customers” at period t do not

match with each other at period t.

To connect our results with empirical works, which often look at trading patterns over

a longer period (say, within a week or month), one can simply repeat our intraday trading

game. That is, at the beginning of a day, banks receive a new draw of valuation. The

matrix Ḡ in Figure 3 represents a binary relation between 16 banks over a longer period,

say, within a week. Banks are ranked in terms of their volatility, where a higher index

i represents a more volatile bank. The entries of the matrix are now defined as Ḡij = 1

if and only if the probability of bank i and j trading with each other within a week is

positive, and zeor otherwise.

25Since the matching decisions at period t are contingent on asset holdings at the end of period t− 1,
this dynamic feature of formation implies that the trading links of a bank at period t are only determined
up to the type (σ, k) at period 0. That is, at period 0, the asset position is effectively a random variable,
and the realization is determined by the trading history. Given the realized positions, a bank (σ, k, 0)
meets (σ′, k′, A). We therefore define an adjacency matrix at t = 0 based on the type (σ, k).

23



Figure 3: Adjacency matrix with 16 banks over a longer period.

Our model thus generates the existing core-periphery structure with multi-layered

hierarchy as documented in Li and Schürhoff [33]. The basic idea behind the core-

periphery network, which often assumes two layers, is that periphery nodes do not connect

with other periphery nodes, and the core nodes are adjacent to other core nodes and some

periphery nodes.26 Our result also provides the economic reason behind the tiering. The

tier of a bank is determined by its gain from trade and hence its willingness to wait.

Banks that are more willing to wait take on misallocation from banks in other tiers that

need immediacy. Hence, customers and periphery dealers in the same tier will never trade

with each other.

Comparison to the Random Search Model In random search models, the match-

ing outcome is less efficient because trading links are assigned randomly. We can nest

random matching in our model by considering (1) a monotonic asset allocation rule, (2)

a nondirectional matching plan, and (3) the rule that all agents build N links (i.e., re-

main active in the market). The last two rules deviate from our optimal solution, thus

generating inefficiency. The non-directional matching plan suggests that customers who

need immediacy could reach their efficient allocation slower than in the optimal match-

ing plan. Moreover, the fact that all traders keep contacting each other also necessarily

generates wasted matches. Our model, on the other hand, predicts that it is sufficient

for a customer to build one link (by contacting one dealer), and the customer can leave

the market without continuing to search.

26In this example, both banks 1 and 2 should be considered as the core, since both of them are the
most connected banks. Banks 3 to 8 can be interpreted as periphery dealers, and banks 9 to 16 can as
customers. More generally, since the centrality measure itself involves rich heterogeneity, empirically, the
core v.s. periphery dealers may be defined in multiple ways.
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7 Normative Implications

Our model has established the efficiency of this highly skewed financial architecture.

That is, the fact that certain banks intermediate a disproportional volume of trades is an

efficient and optimal response to the friction in decentralized markets. The stability of

such a system, on the hand, has become a concern of regulators. In particular, these large,

interconnected banks have become targets for ongoing regulatory reform. For example,

in a recent speech, Neel Kashkari, president of the Federal Reserve Bank of Minneapolis,

argued that one of the goals is to break up large banks into smaller, less connected

banks.27

In order to draw any policy implications, however, one must take into account the

endogenous response of the underlying network. We now use our framework to shed

light on two policy related questions. First, what is the loss to the financial system

when a highly interconnected bank fails ? And how does (or can) the market function

without this bank? Second, with potential contagion risks, should regulators aim to

reduce interconnectedness? What are the costs and benefits associated with such a policy?

7.1 Social Value of “Too Interconnected” Banks

In this subsection, we address the first question: what is the loss to the financial system

when a highly interconnected bank fails? To properly answer this question, we analyze

how the trading network changes as a result of the failure of a “too interconnected”

bank. In particular, although the common belief is that there would be a loss, the open

question is the scope of its magnitude. In order to quantify the added value of highly

interconnected banks, we look at the welfare loss when such banks have been removed

from the market (i.e., when ς > 0 measures of the most interconnected banks exit the

market).

To see how such a change affects welfare, it is convenient to order banks by their

volatility type. Formally, define σ[i] = σ s.t. G(σ) = i. The time that a bank i reaches

its first best is then given by equation (6), t[i] = t∗(σ[i], k). Total welfare can then be

27Neel Kashkari, speech at the Ending Too Big to Fail Policy Symposium, April 4, 2016, Federal
Reserve Bank of Minneapolis. Similarly, Paul Volcker, former chair of the Federal Reserve, argued
that “the risk of failure of large, interconnected firms must be reduced, whether by reducing their size,
curtailing their interconnections, or limiting their activities” (Volcker, 2012).
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expressed as

ˆ Σk

{
N∑
s=1

βsκsπ
H
k (y + σ[i])A

}
−


t[i]−1∑
s=1

βsκsπ(1− π)σ[i])A


 di. (14)

The first term represents the first-best surplus, where all banks reach its efficient allo-

cation. The second term, on the other hand, represents the loss of misallocation over

time.

Recall that our solution implies that the time that a bank reaches his first best is only

a function of the bank’s quantile i. Moreover, a higher quantile bank i′ > i must reach

its efficient allocation earlier (i.e., t[i′] ≥ t[i]). That is, the misallocation term puts less

(more) weight on a higher (lower) quantile bank.

The welfare loss can then easily be seen from (14). Removing the most connected

banks, the ones with the least volatility, leads to possible delay costs for the remaining

banks. Because the quantile of all the remaining banks is now weakly lower, the time of

reaching an efficient allocation must then be weakly higher.

This exercise has two important messages. First, it highlights the social value gen-

erated by these market makers. Even though these banks do not contribute to the gain

from trade (for example, σL = 0), they improve welfare by providing immediacy to others,

which helps to decrease the second term.

Second, the financial market is in fact resilient to such a loss. Indeed, the role of

market making will be endogenously replaced by other banks. That is, the next least

volatile banks will become the most interconnected banks, and all trading links would be

formally optimal in response to such a loss.

This prediction is clearly different from models that assume exogenous trading links

or certain superior trading technology of the core banks. In those environments, one may

mistakenly think that the links or technology of such a bank would be destroyed, thus

exaggerating the loss. This highlights the importance of understanding the economics

behind the formation of trading links.

Another insight from the expression in (14) is that, it is not only market making

activities themselves that are efficient; who provides immediacy also matters. In fact,

the expression immediately suggests that a mean-preserving spread of G(σ) necessarily

improves aggregate welfare, since it leads to a lower misallocation loss while the first

term remains the same. That is, if a social planner can design an optimal distribution

of volatility G(σ), subject to some resource constraint
´
σdG(σ) = σ̄, it is always optimal

to put mass in two extreme points σL and σH . In other words, an economy in which
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banks have different degrees of diversification dominates an economy in which banks are

homogeneous (i.e., a degenerate distribution).

7.2 Policy Implications with Counterparty Risk

Absent counterparty default risk, such a network is constrained efficient. Hence, any

possible benefit of regulation can be justified only by default risks and potential financial

contagion. Motivated by the policy debate and the existing works on financial network

and systemic risk, we now incorporate counterparty risk into our framework by assuming

that the transfer is made at the end of the final period. When the transfer is delayed,

transactions in our model can now be interpreted as borrowing and lending, or taking

long or short positions on derivatives contracts (as opposed to spot transactions).

A concrete application would be the interbank lending market, in which captial con-

sists of the “assets” that are being traded, while the transfer is the repayment that is made

at the end of day.28 Hence, as in Acemoglu et al. [1], a negative shock to one financial

institution may trigger a default chain, which acts like the cost of interconnections.

Preventing financial contagion, then, is the underlying reason for limiting intercon-

nectness. The main advantage of our endogenous network is that we can analyze how

the underlying network responds to policy. As a result, we provide a formal framework

for a cost-benefit analysis. In particular, one can interpret a policy that targets a certain

optimal level of interconnectedness N∗ as if changing the underlying parameter N , which

governs the maximal number of counterparties that a bank can contact in our model. 29

Note that, since it is well known that the exact contagion costs rely on the specified

default assumptions of defaults, our analysis thus focuses on how network changes respond

to any given target level and its effect on welfare, instead of taking a stand on determining

the optimal level of interconnectedness.

7.2.1 Cost-Benefit from Restricting Interconnectedness

The cost-benefit of changing N can clearly be seen in our setting. Figure 4 illustrates a

network in which the maximal number of counterparties is originally set to be N . Now

28See the Appendix for a detailed formulation.
29This target can be implemented by varied policy instruments. In the example of interbank lending,

the market makers will have a high leverage ratio as a result of constantly borrowing and lending over
time. Hence, a restriction on the leverage ratio then effectively prevents banks from trading with too
many banks. As a result, the corresponding network can effectively be understood as if imposing N∗ as
the maximal number of counterparties directly. Alternatively, imposing transaction costs (i.e. tax) can
also be used to reduce the trading activities. In this way, traders will stop trading when the gain from
trades is lower than the transaction cost.
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consider a policy that restricts the maximal number of counterparties to be, for example,

N∗ = N −1. Our model then predicts that (1) the only link that will be deleted is in fact

the one between two highly connected institutions, and (2) the other links remain intact.

Figure 4: Network graph, with 6 rounds of trade. The size of an FI-node represents the
gross trading volume involving the FI.

This prediction again highlights the importance of understanding the underlying force

that drives the observed pattern of interconnectedness. With an exogenous trading net-

work, there is no guideline for how the network changes. In fact, the usual comparison

in the literature is to assume that the trading links will be redistributed. Our results

show that this is actually not true: all other banks have already reached their efficient

allocation, which is also precisely the reason that they do not build more links. Hence,

imposing a cap on interconnections only affects the link between the two most central

dealers.

The efficiency loss can then be easily quantified, which is the misallocation cost among

those central dealers. The fact that the central dealer now needs to bear a higher mis-

allocation cost also implies that the dealer requires a higher bid-ask spread. Our result

thus formalizes the view in Duffie (2012), who argues that limiting market making can

have unintended consequences.

The potential gain of this policy, then, is to reduce possible contagion. As illustrated

in Figure 4, a network is now divided into two disjointed subnetworks led by the most

central market makers. As a result, no risk would travel across two subnetworks. The

exact gain would then depend on the probability that the contagion occurs across these

two subnetworks. As is well known in the existing literature, this probability then depends

on the underlying assumptions on default as well as on the magnitude of the shocks.
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In the appendix, we show that when shocks are relatively small, a highly connected

central market maker will not trigger contagions across two subnetworks. The intuition

is consistent with the existing results: a shock is diluted when it passes through a highly

connected central market maker, since the market maker has many creditors. In this

case, this policy clearly has no gain but only an efficiency loss. On the other hand, when

shocks are large enough, this particular link further propagates the risks. In other words,

such a policy can be justified only in an environment with disaster risks.

7.2.2 Alternative Remedies

As we emphasized earlier, such a highly skewed and interconnected network per se is

in fact efficient, since it serves as a decentralized form of insuring and allocating risks.

Understanding this result is crucial before prescribing the right remedies, since it suggests

that a policy prescription that aims to decrease counterparty risks can do better than

simply restricting interconnectedness. In fact, our results immediately suggest that using

capital requirements to conservatively buffer market-making risks dominates a policy that

restricts market making itself. This result supports the view in Duffie (2012).

Similarly, another way to maintain the benefit of market making without increasing

contagion costs is to have the intermediary bank net out positions between two parties.

That is, in the interbank lending example, an intermediary can replace its obligation to

two parties with a new agreement between two parties directly. In this way, the market-

making service itself will neither accumulate exposures nor induce further contagion costs.

8 Conclusion

We build a dynamic matching model of an over-the-counter market in which market-

making activities and a tiered core-periphery network emerge endogenously. The network

structure is qualitatively similar to what we observe in a typical OTC market. We

show that banks with relatively stable marginal valuation have a comparative advantage

to acts like market makers, who provide immediacy to banks with higher risk-sharing

needs. With this tractable framework of network formation, we establish new normative

implications for “too interconnected” banks, taking into account the endogenous market

response.
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A Appendix

A.1 Omitted Proofs

A.1.1 Proof for Proposition 1

We start the proof by claiming that the allocation within a pair must satisfy monotonicity

property. That is, the asset goes to the bank with a higher realization within the pair,

αt(ε
v′

σ′ , ε
v
σ) = A iff εv

′

σ′ ≥ εvσ. We solve the planner’s problem under this allocation rule

and then verify the claim below. The monotonicity property thus suggests that, after

exchanging the asset within a pair, for σ2 ≥ σ1, π
H
t+1(σ2, A, k

′) = 1,πHt+1(σ2, 0, k
′) = 0,

and πHt+1(σ1, ã, k) = πHt (z) for ã ∈ {0, A}. Given thatπH0 (σ, ã, k) = πHk , the probability

that a bank owns the asset after the trade at period t, is therefore given by πHk′ for bank

(σ2, ã, k
′) and (1− πHk′ ) for bank (σ1, ã, k). As a result, within the pair, the more volatile

type (σ, k) would reach his efficient allocation, with the expected payoff κtAπ
H
k (y + σ).

The expected flow surplus for the less volatile type within the pair is then given by

(1− πHk′ )(y + (2πHk − 1)σ).

The optimal assignment function ft then effectively determines whether a bank would

reach his efficient allocation at period t. Letηt(σ) be the index function so that ηt(σ) = 1

iff a bank-σ is assigned efficient allocation at period t and ηt(σ) = 0 otherwise. The social

planner’s problem can be rewritten as

Π = max
ηt(σ)∈{0,1},∀σ∈Σ

1

2

∑
k

{
N∑
t=1

ˆ
βtκtA

[
ηt(σ)πHk (y + σ)

+(1− ηt(σ))(1− πHk′ )(y + (2πHk − 1)σ)
]
g(σ)dσ

}

such that

µ
({
σ : ηt(σ)− ηt−1(σ) = 1,∀σ ∈

∑})
≤ µ

({
σ : ηt(σ) = 0,∀σ ∈

∑})
,

and for all σ ∈
∑

, µ ({s : ηt(s) = 1, s ≤ σ}) + µ ({s : ηt(s) = 0, , s ≤ σ}) = G(σ).30

The first constraint is imposed by pair-wise matching. If a bank switches from having

misallocated assets to having first best allocation for sure in that period, it must be the

case that there is another bank taking on the misallocation from such a bank. Hence, the

measure of banks who switch to first best allocation in that period must be no greater

than the measure of banks who take misallocated assets at the end of that period. The

second constraint is the feasibility constraint.

The following claim shows that if banks of type σ receive first best allocation, all

30η0(σ) = 0, for all σ ∈
∑

.
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banks with type σ′ > σ must receive first best allocation.

Claim 1 If ηt(σ) = 1, then ηt(σ
′) = 1 for σ′ > σ.

Proof. The flow payoff of a bank of type σ as a function of ηt is proportional to Φ(ηt, σ) ≡
ηtπ

H
k (y+σ)+(1−ηt)(1−πHk′ )(y+(2πHk −1)σ). Then, Φ12(ηt, σ) = πHk −(1−πHk′ )(2πHk −1) =

2π(1− π) > 0. That is, the value of getting efficient allocation is strictly increasing in σ.

Given this claim and the fact that the first constraint is binding, the period that a

bank who reaches his efficient allocation t∗(σ, k) as well as the total surplus are then as

stated in the proposition.

Below, we verify that any allocation that violates the monotonicity property only

strictly decreases the surplus.

Claim 2 Optimal asset allocations within a pair must satisfy the monotonicity property.

Proof. Clearly, the monotonicity property holds for the last period N for any matching

plan. Suppose that the monotonicity property within any pair (σ′, σ) holds for period

t + 1 for any matching plan. We now show that given any matching plan in period t,

the monotonicity property holds within a pair. Consider an alternative allocation rule

for two banks of type (σ2, A, k
′) and (σ1, 0, k) respectively, which gives the conditional

distribution of preference type to be π̂Ht+1(σ2, A, k
′) ≤ 1 and π̂Ht+1(σ2, 0, k

′) ≥ 0, and

π̂Ht+1(σ1, ãt, k
′) ≥ 0. Let φ̂t(σ, k) denote the probability that a bank of type (σ, k) owns

the asset after the trade at period t under this allocation rule. Any arbitrary allocation

rule must satisfy φ̂t(σ, k)π̂Ht+1(σ,A, k) + (1− φ̂t(σ, k))π̂Ht+1(σ, 0, k) = πHt (z).

Any allocation that violates the monotonicity property strictly decreases the flow

surplus at the period t. What is left to show is that the social surplus next period under

such deviation is also weakly lower than the one without deviation. Let f̂t+1 be the

matching plan next period following this deviating allocation. We now show that if one

follows the monotonicity rule at period t and the same assignment rule f̂t+1, one can

achieve a weakly higher surplus. In other words, the maximum surplus at t+ 1 generated

under the deviation is also achievable if one follows the monotonicity rule at period t.

As a result, the maximum surplus must be weakly higher when monotonicity property is

satisfied.

Given that the matching must be across groups and with different holding, for sim-

plicity, we use σ∗(σi) to denote the volatility of the optimal counterparty of type-σi bank

under f̂t+1, and πj∗ ≡ πHt+1(σ∗(σi)) for i = 1, 2. First, consider the case when both banks

are actively matched with a bank σ∗(σi) 6= {∅}. If σi > σ∗(σi), the sum of expected pay-

off generated by the pair{(σi, A, k), (j∗(σi), 0, k
′)} and the pair{(σi, 0, k), (j∗(σi), A, k

′)}
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at period t+ 1 yields:

φ̂t(σi, ki)κt+1A
{
π̂Ht+1(σi, A, ki)(y + σ) + (1− π̂Ht+1(σi, A, ki)(y + (πj∗ − 1)σ∗(σi))

}
+ (1− φ̂t(σi, ki))κt+1A

{
π̂Ht+1(σi, 0, ki)(y + σ) + (1− π̂Ht+1(σi, 0, ki)(y + (2πj∗ − 1)σ∗(σi))

}
= κt+1A

{
πHt (z)(y + σi) + (1− πHt (z))(y + (2πj∗ − 1)σ∗(σi)

}
If σi < σ∗(σi), the total surplus is then

φ̂t(σi, ki)κt+1A
{
πj∗(y + σ∗(σi)) + (1− πj∗)(y + (2π̂Ht+1(σi, A, ki)− 1)σi)

}
+ (1− φ̂(σi, ki))κt+1A

{
πj∗(y + σ∗(σi)) + (1− πj∗))(y + (2π̂Ht+1(σi, 0, ki)− 1)σi)

}
= κt+1A

[
πj∗(y + σ∗(σi)) + (1− πj∗)y + (1− πj∗)(2πHt (z)− 1)

]
.

Observe that, in both cases, the resulting surplus is independent of π̂Ht+1(σi, a, ki) and

φ̂t(σi, ki), which is a function of the allocation rule at period t. In other words, the same

expected payoff can be achieved for any arbitrary allocation rule at period t, including

the one that satisfies the monotonicity rule.

Second, consider the case that, at period t + 1, one of banks matches with none and

the other one matches with a bank σ∗(σi). Conditional on giving σ∗(σi) exactly the same

payoff, it is clear that the following matching plan gives a strictly higher surplus for both

periods: (1) letting σ2 reach efficient allocation at period t and match with none at t+ 1

and (2) letting σ1 match with σ∗(σi) and give σ∗(σi) the same payoff. Lastly, if both

banks matches with none under f̂t+1, what matters is only the flow payoff of holding the

asset and hence the payoff is strictly higher when monotonicity holds.

A.1.2 Proof for Proposition 2

To prove Proposition 2, we first provide the complete characterization of an decentral-

ized equilibrium and then prove that it satisfies all conditions and then show that it is

constrained efficient. In an economy with N rounds of trade,

- Matching outcomes: The dynamic equilibrium follows a recursive structure, where

matching at period t is characterized by a cutoff volatility type, σ∗t , such that G(σ∗t ) = 1
2t

,

for t = 1, . . . , N . And the equilibrium distribution is characterized by equations (15) and

(16).

ˆ σ∗t−1

σ∗t

ft((σ, a, k), (σ̃,a′, k′))dσ̃

=

{
1
2g(σ), if t = 1,

g(σ)
(
πLk′I{a = A}+ πHk′ I{a = 0}

)
, if σL ≤ σ ≤ σ∗t−1, t > 1,

(15)

ft(z, {∅}) = g(σ)
(
πHk I{a = A}+ πLk I{a = 0}

)
, if σ∗t−1 < σ ≤ σH , t > 1. (16)
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- The probability that a bank-z has a high preference realization is given byπH1 (z) = πHk
and for t ≥ 2 :

πHt (σ,A, k) =

{
1, if σ∗t−1 ≤ σ,
πHk , if σ ≤ σ∗t−1.

(17)

- The contract ψ∗t (·, ·) within the pair: 1) the asset allocation is given by

αt ((v, z) , (v′, z′)) =

{
A, if σ > σ′, v = H, or σ ≤ σ′, v′ = L,

0, if σ > σ′, v = L, or σ ≤ σ′, v′ = H,
(18)

and 2) the transfer
{

(qvakt , q
vb
kt)
}
k∈{R,B},v∈{H,L} is given by equations (19) and (20):

qHakt = κt(y + σ∗t ) + βqak′t+1, qLakt = κty + βq̄t+1 +
1

2
β
πLk′

πHk′
ckt+1, (19)

qHbkt = κty + βq̄t+1 +
1

2
β
πHk′

πLk′
ckt+1, qLbkt = κt(y − σ∗t ) + βqbk′t+1, (20)

where qakt ≡
∑

v π
v
kq
va
kt , q

b
kt ≡

∑
πvkq

vb
kt , ckt+1 ≡ qbkt+1 − qbk′t+1 = qakt+1 − qak′t+1,q̄t ≡∑N

s=t β
s−tyκs, and the last period transfer is given by

qHakN = κN(y + σ∗N), qLakN = qHbkN = κNy, q
Lb
kN = κN(y − σ∗N). (21)

- The equilibrium payoff of banks W ∗
t (z) is given by equations (22) and (23).

W ∗t (A, σ, k) =


πLk′
{
κt
[
y + (2πHk − 1)σ

]
A+ βW ∗t+1(A, σ, k)

}
+πHk′

{
qaktA+ βW ∗t+1(0, σ, k)

}
, ∀σ ≤ σ∗t

πHk
(
ΣN
s=tκs(y + σ)A

)
+ (1− πHk )qbktA, ∀σ∗t < σ ≤ σ∗t−1,

ΣN
s=tκs(y + σ)A, ∀σ∗t−1 < σ.

(22)

W ∗t (0, σ, k) =


πLk′
{
κt
[
y + (2πHk − 1)σ

]
A− qbk′t

+βW ∗t+1(A, σ, k)
}

+ πHk′βW
∗
t+1(0, σ, k), ∀σ ≤ σ∗t ,

πHk
(
ΣN
s=tκs(y + σ)A− qak′tA

)
, ∀σ∗t < σ ≤ σ∗t−1,

0, ∀σ∗t−1 < σ.

(23)

Proof. The constructed equilibrium can be understood as follows: Each period, a bank

chooses to be a market maker (m), a customer (c), or inactive∅.The payoff of a bank

depends on the role he choose to plays (this choice is denoted by ρ ∈ {m, c, ∅}). Since

the matching must be across groups, a bank in group k who chooses to be a customer

trade with market maker in group k′. If a bank (σ, k) chooses to be a “customer”, ρ = c,

he keeps the asset if and only if he has a high realization. If he needs to buy, he pays the

ask price, denoted by qvak′t, charged by the market-maker with realization v in group k′. If
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he needs to sell, he receives the bid price, denoted by qvbk′t, from this market maker. On

the other hand, if a bank with realization v in group k chooses to be a “market-maker”

(ρ = m), he keeps the asset for that period only if the customers have a low realization,

and he buys at the bid price qvbkt and sells at the ask price qvakt .

Note that we allow for the price schedule
{

(qvakt , q
vb
kt)
}
k∈{R,B},v∈{H,L} that is contin-

gent on the market maker’s own preference. In particular, we will look for the price

implementation such that the constructed matching rule also satisfies bank’s ex-post in-

centives. From a viewpoint of a customer in group k, the expected bid/ask spread thus

depends on the distribution of market maker’s valuation in group k′, and is then given

by qak′t ≡
∑

v π
v
k′q

va
k′t, q

b
kt ≡

∑
πvk′q

vb
k′t.

Formally, let Ŵ v
t (z, ρ) denote the utility of a bank of type z = (σ, ã, k) with preference

realization v ∈ {H,L} who chooses the role ρ. We now prove that given the constructed

price, banks’ choice would satisfy the cutoff matching rule in each period characterized

by equations (15) and (16). That is, in period t, a bank with typeσ ≤ σ∗t chooses to be a

market maker, and a bank with type σ ∈ [σ∗t , σ
∗
t−1] chooses to be a customer; and a bank

with type σ ∈ [σ∗t−1, σH ] (who were customers last period) stay inactive.

Since different role choice leads to different combination of the probability of owning

the asset and price, W v
t (z) = maxρ̃∈{m,c,∅} Ŵ

v
t (z, ρ̃) can be conveniently rewritten as

W v
t (σ,A, k) = max

ρ
φvkA(ρ)

[
κt(y + ξ(v)σ)A+ βW v

t+1(σ,A, k)
]

+(1− φvkA(ρ))
[
τvkA(ρ)A+ βW v

t+1(σ, 0, k)
]

W v
t (σ, 0, k) = max

ρ
φvk0(ρ)

[
κt(y + ξ(v)σ)A− τvk0(ρ)A+ βW v

t+1(σ,A, k)
]

+(1− φvk0(ρ))βW v
t+1(σ, 0, k),

where given any v∈ {H,L} and a ∈ {0, A}, φvka(ρ) denotes the probability of keeping the

asset after the trade in that period and τ vka(ρ) denotes the transfer per asset. ξ(H) = 1

and ξ(L) = −1. Both of them are mapped to the role choice ρ and thus have the following

expressions:

{φHkA(ρ), τHkA(ρ)} =


{1, 0}, if ρ = c,

{πLk′ , qHakt }, if ρ = m,

{1, 0}, if ρ = ∅,
{φLkA(ρ), τLkA(ρ)} =


{0,
∑

v q
vb
tk′}, if ρ = c,

{πLk′ , qLatk }, if ρ = m,

{1, 0}, if ρ = ∅,

{φHk0(ρ), τHk0(ρ)} =


{1,
∑

v q
va
tk′}, if ρ = c,

{πLk′ , qHbtk }, if ρ = m,

{0, 0}, if ρ = ∅,
{φLk0(ρ), τLk0(ρ)} =


{0, 0}, if ρ = c,

{πLk′ , qLbtk }, if ρ = m,

{0, 0}, if ρ = ∅.

Lemma 2 Given the transfer
{

(qvakt , q
vb
kt)
}
k∈{R,B},v∈{H,L} characterized by equations (19)

34



and (20), the following property holds for any t,

WH
t (σ,A, k)−WH

t (σ, 0, k) = qak′t, WL
t (σ,A, k)−WL

t (σ, 0, k) = qbk′t. (24)

Proof. The probability for a bank to hold optimally a units of asset at period t is denoted

by φv∗kta(σ) ≡ φvka (ρ∗t (σ, a, k)) , where ρ∗t (z) ∈ arg maxρ̃∈{m,c,∅} Ŵ
v
t (z, ρ̃).

For period N , clearly that φH∗Na(σ) is increasing in σ and φL∗Na(σ) is decreasing in σ

because continuation value is 0. Hence, given σ∗N , there exists
{

(qvakN , q
vb
kN)
}
k∈{R,B},v∈{H,L}

that solves δvt (σ
∗, ã, k) = 0 for v ∈ {H,L}, ã ∈ {0, A}, k ∈ {R,B}, where δvt (z) ≡

Ŵ v
t (z, c)− Ŵ v

t (z,m).

δHN (σ∗, A, k) = πHk′
(
κN (y + σ∗N )− qHakN

)
A = 0,

δLN (σ∗, A, k) =

[∑
v′

πv
′
k′q

v′b
k′N − πHk′ qLakN − κNπLk′(y − σ∗N )

]
A = 0,

δHN (σ∗, 0, k) =

[
−

(∑
v′

πv
′
k′q

v′a
k′N − πLk′qHbkN

)
+ πHk′κN (y + σ∗N )

]
A = 0,

δLN (σ∗, 0, k) = πLk′
[
qLbkN − κN (y − σ∗)

]
A = 0.

Setting qLakN = qLak′N = qHbk′N = qHbkN = κNy gives the expression in equation (21).31 Given

the price, regardless of the initial position a, banks with high (low) preference and σ ≥
σ∗N will own the asset with probability one (zero). banks with σ < σ∗N , on the other

hand, always strictly better off to act as a market maker, who only holds the asset

with probability πLk′ . That is, φH∗kNA(σ) = φH∗kN0(σ) =

{
1, if σ ≥ σ∗N ,

πLk′ , if σ < σ∗N ,
φL∗kNA(σ) =

φL∗kN0(σ) =

{
0, if σ ≥ σ∗N ,

πLk′ , if σ < σ∗N .
By envelope theorem, ∂

∂σ
{W v

N(σ,A, k)−W v
N(σ, 0, k)} = 0.

Given that W v
N(σ,A, k)−W v

N(σ, 0, k) is a continuous function,

WH
N (σ,A, k)−WH

N (σ, 0, k) = WH
N (σ∗N , A, k)−WH

N (σ∗N , 0, k) = qak′t,

WL
N(σ,A, k)−WL

N(σ, 0, k) = WL
N(σ∗N , A, k)−WL

N(σ∗N , 0, k) = qbk′t.

In other words, the value of owning the asset at the beginning of each period is the

same for all banks. Intuitively, for banks with σ ≥ σ∗N , he will buy the asset for sure

if he has a high realization. Hence, owning the asset at the beginning of the period

saves the expected asking price, qak′t =
∑

v′ π
v′

k′q
v′a
k′NA. Similarly, he will sell the asset

for sure if he has a low realization. In this case, he will receive the expected bid price

qbk′t =
∑

v′ π
v′

k′q
v′b
k′NA. On the other hand, for banks who act as a market maker, the gain

31This imposition can be derived from the restriction that an ask price be greater than or equal to a
bid price.
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of owning the asset only changes the expected transfer.

We now show that equation (24) holds for any t under the constructed price {(qvakt ,
qvbkt)
}
∀k,v. Using mathematical induction, we assume that this property holds for t + 1.

Since ∂
∂σ

{
W v
t+1(σ,A, k) −W v

t+1(σ, 0, k)
}

= 0, by monotone comparative statics, φH∗ta (σ)

is increasing in σ and φL∗ta (σ) is decreasing in σ. Hence, given σ∗t , {(qvakt , qvbkt)
}
∀k,v solves

the following equations:

δHt (σ∗t , A, k) = AπHk′
(
−qHakt + κt(y + σ∗) + βqak′t+1

)
= 0,

δLt (σ∗t , A, k) = A
[
qak′t −

(
πHk′ q

La
kt + κtπ

L
k′(y − σ∗)

)]
− β(1− πHk′ )qbk′t+1A = 0,

δHt (σ∗t , 0, k) = A
[
−
(
qak′t − πLk′qHbkt

)
+ πHk′κt(y + σ∗t )

]
+ β(1− πHk′ )qak′t+1A = 0,

δLt (σ∗t , 0, k) = AπLk′
[
qLbkt − κt(y − σ∗t )

]
− β(1− πHk′ )qbk′t+1A = 0.

And one can check that equations (19) and (20) solve the system of equations above. As

a result,

φH∗ktA(σ) = φH∗kt0(σ) =

{
1, if σ ≥ σ∗t ,
πLk′ , if σ < σ∗t ,

φL∗ktA(σ) = φL∗kt0(σ) =

{
0, if σ ≥ σ∗t ,
πLk′ , if σ < σ∗t .

Given that φv∗ktA(σ) = φv∗kt0(σ), ∂
∂σ

{
W v
t+1(σ,A, k)−W v

t+1(σ, 0, k)
}

= 0, and

W v
t (σ,A, k)−W v

t (σ, 0, k)

=
{
φv∗ktA(σ)

[
κt(y + ξ(v)σ)A+ βW v

t+1(σ,A, k)
]

+ (1− φv∗ktA(σ))
[
βW v

t+1(σ, 0, k) + τvkA(ρ∗)A
]}

−
{
φv∗kt0(σ)

[
κt(y + ξ(v)σ)A+ βW v

t+1(σ,A, k)− τvk0(ρ∗)A
]

+ (1− φv∗kt0(σ))βW v
t+1(σ, 0, k)

}
= (1− φv∗ktA(σ))τvkA(ρ∗)A+ φv∗kt0(σ)τvk0(ρ∗)A.

We then have
∂{W v

t (σ,A,k)−W v
t (σ,0,k)}

∂σ
= 0 and

W v
t (σ,A, k)−W v

t (σ, 0, k) = W v
t (σ∗, A, k)−W v

t (σ∗, 0, k) =

{
qak′t, if v = H,

qbk′t, if v = L.

Lemma 1 is immediately implied by Lemma 2. That is, one can clearly see that

δvt (σ, a, k) strictly increases with σ. Furthermore, one can easily check that
{

(qvakt , q
vb
kt)
}
∀k,v

satisfy the stated conditions in Lemma 1. This therefore guarantees that banks’ optimal

choice of roles can be characterized by the cutoff type σ∗t , and such a choice only depends

on volatility type σ, but not others variables (v, at, k). Hence, given the role last period

ρt−1, the equilibrium payoff of banks W ∗
t (z) in the construction is then given by

W ∗
t (z) = max

ρ̃∈{m,c,∅}
Ẅt(z, ρ̃|ρt−1(z)),
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where Ẅt(z, ρ̃|ρt−1(z)) ≡
∑

v∈{L,H} π
v
t (z|ρt−1)Ŵ v

t (z, ρ̃|ρt−1) and πvt (z|ρt−1) depends on the

role a type-z bank chooses to play in period t − 1.32 If a bank acts as a customer last

period (ρt−1 = c), he has A assets or no asset if and only if he has high or low preference

realization, that is, πHt (σ,A, k|c) = 1 and πHt (σ, 0, k|c) = 0. One can easily see that for

banks who acted as a customer last period andσ > σ∗t−1, there is no gain by participating

the market at period t so they stay inactive afterward. On the other hand, being a

market-maker faces a random asset position next period, so the probability that a maker

maker is a high type is then the ex-ante prior:πvt (σ,A, k|m) = πvk and πvt (σ, 0, k|m) = πvk.

These give the expression of equations (22), (23) as well as the evolution of πvt (z) in

equation (17).

To show that, given W ∗
t (z), there is no profitable deviation by violating the match-

ing rule, Lemma 3 establishes the submodular property of joint payoff in this dynamic

environment. Since banks always trade across groups and with banks with different

asset holding, we assume a simpler notations to denote the joint payoff, Ω̂t(σ, σ
′) ≡

Ωt((σ, a, k), (σ′, a′, k′)), where a′ 6= a and k′ 6= k.

Lemma 3 Let σ4 ≥ σ3 > σ2 ≥ σ1, for any π ∈ (0, 1), Ω̂t(σ4, σ3) + Ω̂t(σ2, σ1) <

Ω̂t(σ4, σ1) + Ω̂t(σ3, σ2) = Ω̂t(σ4, σ2) + Ω̂t(σ3, σ1).

Proof. Given Lemma 2, since the benefit of holding the asset is independent of σ. The

asset allocation within a pair simply maximizes the flow surplus, which explains the

optimal asset allocation given by equation (18). Define W FB
t (σ, k) ≡ πHk W

H
t (σ,A, k) +

(1 − πHk )WL
t (σ, 0, k) to be a expected payoff of a bank if he has reached his efficient

allocation and WM
t (σ, k) ≡ maxρ̃∈{m,c,∅} Ẅt(z, ρ̃|m) to be payoff of a bank who acted as

market maker last period, which gives the following expression:

WM
t (σ, k) =

∑
v

πvk

[
πLk′Ŵ

v
t (σ,A, k) + (1− πLk′)Ŵ v

t (σ, 0, k)
]

= WFB
t (σ, k)− πHk (1− πLk′)

{
WH
t (σ,A, k)−WH

t (σ, 0, k)
}

−(1− πHk )πLk′
{
WL
t (σ, 0, k)−WL

t (σ,A, k)
}
.

Hence, the joint payoff function of two banks (σ′, σ) and σ′ ≥ σ yields

Ω̂t(σ, σ
′) = A

(
πHk′ (y + σ′) + (1− πHk′ ) [y + (2π − 1)σ]

)
+ β{WFB

t+1 (σ′, k′) +WM
t+1(σ, k)}

= A
(
πHk′ (y + σ′) + (1− πHk′ ) [y + (2π − 1)σ]

)
+ β{WFB

t+1 (σ′, k′) +WFB
t+1 (σ, k)

−π(1− π)
∑
v

[W v
t (σ,A, k)−W v

t (σ, 0, k)]}.

Since the change in the continuation value is independent of the σ and k, what matters

is only the flow surplus. Hence, as in the static model, the above Lemma holds.

32πvt (z|ρt−1) is part of subjective calculation of a bank when he decides to deviate from his equilibrium
choice or not. If he follows his equilibrium choice of ρt−1, πvt (z|ρt−1) = πvt (z).
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Given the submodular property of Ω̂t(σ, σ
′), the following lemma established that the

matching function must satisfy the cut-off rule among all activce banks.

The matching function f must satisfy the following conditions: if ft(σ, σ
′) > 0 and

ft(σ̂, σ̂
′) > 0, max(σ, σ′) + max(σ̂, σ̂′) = σ4 + σ3, where σi is the ith order statistic of

{σ, σ′, σ̂, σ̂′}.
Proof. Suppose not, consider an equilibrium where ft(σ3, σ4) > 0 and ft(σ2, σ1) > 0.

Note that equation (8) can be rewritten as: W ∗
t (σ) + W ∗

t (σ′) ≥ Ωt(σ, σ
′) for ∀(σ, σ′).

Hence, we have W ∗
t (σ4) +W ∗

t (σ2) ≥ Ω(σ4, σ2) and W ∗
t (σ3) +W ∗

t (σ1) ≥ Ωt(σ3, σ1), which

implies ΣW ∗
t (σj) ≥ Ωt(σ4, σ2)+Ωt(σ3, σ1). However, since ft(σ3, σ4) > 0 and ft(σ2, σ1) > 0

implies that W ∗
t (σ4) +W ∗

t (σ3) = Ωt(σ4, σ3) and W ∗
t (σ2) +W ∗

t (σ1) = Ωt(σ1, σ2), which in

turn implies that ΣW ∗
t (σj) = Ωt(σ4, σ3) + Ωt(σ1, σ2) > Ωt(σ4, σ2) + Ωt(σ3, σ1). Contradic-

tion by Lemma 2.

In other words, there exists σ∗t ∈ [σL, σH ] such that ft(σ, σ
′) = 0 for each (σ, σ′) ∈

[σ∗t , σ
∗
t−1]× [σ∗t , σ

∗
t−1] and (σ, σ′) ∈ [σL, σ

∗
t ]× [σL, σ

∗
t ].

Hence, we have shown that the above construction is indeed an equilibrium. In this

equilibrium, the period t∗(σ, k) that a bank-(σ, k) reaches his first best allocation for sure

is then the period that a bank acts as a customer. Hence, the expected output for a bank

satisfies the solution of constrained efficiency in Proposition 1. This completes the proof

for the proposition.

A.2 Diversification and Heterogeneity in Volatility

We show that the heterogeneity in volatility can be mapped to different levels of portfolio

diversification. Assume that there are two types of illiquid assets, whose payoffs are

negatively correlated. Banks are endowed with different portfolios. Normalizing the size

of an institution in terms of its illiquid asset holding to be 1, we denote the portfolio of

bank i by a = (ω1i, ω2i), where ωji denotes its holding of type-j assets. ω1i +ω2i = 1, and

ω1i, ω2i > 0. The degree of diversification is then given by max (ω1i, ω2i).

The assets are Lucas trees producing dividend goods each period. The dividend of

a type-j asset held by bank i at period t is dkit. Banks can trade a financial contract,

which is a promise to pay one dividend good each period. The payoff of a bank at

period t is ut(a1i, a2i, αt) = (a1i + a2i)U (ω1id1it + ω2id2it + αt) + τt, dkit is the period-

t dividend of a type-k asset held by bank i, αt is the bank’s period-t holding of the

financial contract, τt is consumption of numeraire goods and U(d) = yd − γ
2

(
d− D̄

)2
,

where D̄ = 1
2

[D(H) +D(L)]. D(S) denotes the state contingent dividend payment.

D(H) > D(L) > 0. The dividend flows of an asset at any period are determined at

38



period 0 but after matching decisions are made:

(d1it, d2it) =

{
(D(V ), D(∼ V )) with Prob λ,

(D(vi), D(∼ vi)) with Prob 1− λ.

V is an aggregate shock and vi is an idiosyncratic shock, V, vi ∈ {H,L}. V and ∼ V are

perfectly negatively correlated, Pr(V =∼ V ) = 0. The same applies to vi and ∼ vi. With

this setup, the payoff of bank i mimics the general setup with preference correlation.

The period 0 payoff of a bank is
∑

t β
t [ut(a1i, a2i, αt) + τt], where β ∈ (0, 1) is a discount

factor.

The holding of the financial contracts of any financial institution is restricted to be

between −η and η, with η ∈ (0, 1), reflecting the trading capacity of a bank. Under this

setup, we can show that the stable matching plan is the same as in our dynamic model,

as long as the trading capacity of banks is small enough and the metric of diversification,

max (ω1i, ω2i), maps to the volatility type of a bank.

A.3 Correlation of Preferences across Traders

Traders are divided into two groups with the same population and distribution of volatility

types, labeled by k ∈ {R,B}. Assume that traders’ specific shocks in each group k ∈
{R,B} is given by

viR =

{
V, with Prob λ,

vi, with Prob 1− λ,
viB =

{
∼ V, with Prob λ,

vi, with Prob 1− λ,

where V and vi are uncorrelated random variables and they all take value {H,L} with

equal probability. The variableV is an aggregate shock while vi is idiosyncratic, and

we assume that the realization of the aggregate shock V is publicly observable. The

variable∼ V takes the opposite realization compared with V . Group R has positive

exposure to the aggregate shock and groupB has negative exposure. Probability λ ∈ [0, 1)

represents the intensity of the exposure to the aggregate shock in each group. Let πvk

denote the probability that a trader in group k has valuation v. By construction, when

V = H, then π ≡ πHR = (1 − πHB ) = 1+λ
2

and when V = L, π = πHR = (1 − πHB ) = 1−λ
2
.

Thus, π ∈ (0, 1) for any λ ∈ [0, 1). Hence, λ = 1 (λ = 0) represents the case of perfectly

negative (zero) correlation.
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A.4 Contagion

Motivated by the existing (growing) literature on network and financial contagion, we

study the spread of unexpected shocks triggered by the unexpected loss of a bank through-

out this highly skewed, interconnected network. Such negative shocks can be from invest-

ment returns or other outstanding assets of the FI. We make the following assumptions

on defaults: (1) An FI defaults whenever the loss is higher than its equity value e. (2)

Each FI must meet the outside obligation b, which is assumed to have seniority relative

to its liabilities within the network. We look at the shock regime that an FI can always

meet its senior liabilities b so that the loss is only distributed within the network. (3)

There is a deadweight loss z whenever an FI defaults.33

Let l0 denote the size of the negative shock that hits the initial distressed FI i, which

will default if l0 ≥ e. If the FI has n creditors, each creditor takes a loss of 1
n

(l0 + z − e).
The default of creditors may trigger further default. As there is no circle in the equilib-

rium network, the prorogation of risks can be characterized easily. The threshold for a

connected FI becoming insolvent is summarized in the proposition below.

Proposition 3 The default of the first distressed bank i will induce the default of bank x

that is m links away from bank i if (1) there is a credit chain between bank i and bank x

and (2) the initial loss l0 satisfies the following condition:

l0 − e ≥ max{0, ζm1 }, (25)

ζmj = njbe− z + nj max{0, ζmj+1},∀1 ≤ j < m, ζmm = nmb e− z, (26)

where njb denotes the number of creditors of the jth FI on the chain, starting from the

first distressed FI and ending at the FI-x.

Proof. For the immediate creditors of the first distressed FI, conditions under which

they will default is l′ ≥ e where where l′ is the loss of immediate creditors to the first

insolvent FI, l′ = l+z−e
n1
b

. This implies l0 − e ≥ n1
be − z. So, the distressed FI and its

creditors default if and only if l − e ≥ max{0, n1e− z}. Therefore, the proposition holds

for immediate creditors of the first insolvent FI in the network.

Denote the loss of the (k − 1)th creditor to be lk−1. Since lk = lk−1+z−e
nk

, the kth

creditor on the chain will default if lk−1 − e ≥ nke − z. This constraint is not binding

33The deadweight loss can be interpreted as a bankruptcy loss or a liquidation cost. For example,
under a slightly different formulation, where e is the cash holding of an FI and the only illiquid asset of
an FI is the project created through the credit market, z can be thought of as the liquidation cost of the
illiquid asset.
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if 0 > nke − z, because if the kth creditor defaults, it must be that lk−1 − e ≥ 0.

Therefore, the kth creditor and all creditors between the first FI on the chain if and only

if l0 − e ≥ max{0, n1e− z}, l1 − e ≥ max{0, n2e− z}, . . . lk−1 − e ≥ max{0, nke− z}.
From which we can derive equations (25) and (26), a condition for the initial loss l0.

The proposition shows that two factors are driving the contagion. The first one is the

dilution effect pointed out by Allen and Gale (2000)[6]. When an FI has more creditors,

the burden of any losses is shared among its creditors. This dilutes the loss and its

creditors are less likely to default, leading to less fragility. This shows up in the threshold

for contagion ζm1 , which increases with the number of creditors of FIs on the chain. To

see this clearly, let lm denote the loss received by an FI that is m links away conditional

on the event that all creditors before him default, which can be expressed as

lm =
l0

Πm−1
j=0 n

j
b

+
m−1∑
j=0

(z − e)
Πm−1
i=j n

j
b

> e.

Corollary 1 Consider an initial shock l0 > e that hits FI i. (1) All immediate creditors

remain solvent if and only if nib ≥ l0+z−e
e

, where nib is the number of creditors of FI i.

(2) Rank all immediate creditors by the number of their customers, indexed by c. That is,

nb(c
′) ≥ nb(c) for any c′ > c. If no FI defaults in subnetwork gc

−i, then no FI defaults in

subnetwork gc′

−i.

The corollary then establishes that a highly connected central market maker will not

trigger contagions across another sub network leading by another central market maker,

since both of them have more creditors.
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