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This paper investigates portfolio selection in the presence of transaction costs and ambiguity about re- 

turn predictability. By distinguishing between ambiguity aversion to returns and to return predictors, we 

derive the optimal dynamic trading rule in closed form within the framework of Gârleanu and Pedersen 

(2013), using the robust optimization method. We characterize its properties and the unique mechanism 

through which ambiguity aversion impacts the optimal robust strategy. In addition to the two trading 

principles documented in Gârleanu and Pedersen (2013), our model further implies that the robust strat- 

egy aims to reduce the expected loss arising from estimation errors. Ambiguity-averse investors trade 

toward an aim portfolio that gives less weight to highly volatile return-predicting factors, and loads less 

on the securities that have large and costly positions in the existing portfolio. Using data on various com- 

modity futures, we show that the robust strategy outperforms the corresponding non-robust strategy in 

out-of-sample tests. 
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. Introduction 

Portfolio optimization depends crucially on the predicted re-

urns of individual securities; thus, the resulting portfolio may de-

iver poor out-of-sample performance due to estimation errors in

sset returns. For example, if an asset return is overestimated, then

he resulting upward-biased position in this asset not only lowers

he overall portfolio return but also entails unwarranted transac-

ion costs. Importantly, subsequent adjustments to this biased po-

ition may lead to significant turnover and induce further trans-

ction costs. The effect of estimation errors is particularly pro-

ounced for highly frequently-rebalanced dynamic trading strate-

ies, such as momentum and contrarian strategies. 

Estimation errors in returns arise because the model used

o predict returns might be misspecified, and model parameters

ave to be estimated based on limited available information. In

ther words, modelling data-generating processes for returns and

heir predictors must allow for model and parameter ambigu-

ty or uncertainty, as the complete distributions of returns and

eturn-predicting variables are unknown to investors due to im-

erfect information ( Epstein and Wang, 1994; Hansen and Sargent,
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001 ). Given the significant impact of estimation errors on port-

olio weights and portfolio performance, there is evidence that in-

estors are averse rather than neutral to ambiguity in estimated

sset returns ( Hansen and Sargent, 2001; Garlappi et al., 2007;

eong et al., 2015 ). 1 It is important for active investors to factor

mbiguity aversion into the portfolio optimization procedure. 

One method adopted in the literature to deal with ambiguity

n portfolio optimization is the Bayesian approach ( Black and Lit-

erman, 1992; Barberis, 20 0 0; Pástor and Stambaugh, 2012 ). Un-

er this approach, the predictive distribution of asset returns is re-

overed by combining the pre-specified prior over the parameters

ith observations from the data. However, this approach considers

nly a single prior ( Garlappi et al., 2007 ), and may not be able to

roduce a stable optimal portfolio when the number of assets is

arge. The other method to deal with parameter ambiguity is ro-

ust optimization, which provides robust decisions in the context

f limited distribution information. This approach typically defines

 set of distributions that are assumed to include the true distribu-

ion of parameters, and then solves for the optimal portfolio based

n the worst-case returns that are recovered from the distributions

n this set ( Epstein and Wang, 1994; Chen and Epstein, 2002; An-

erson et al., 2003 ). 

Building on the non-robust framework of Gârleanu and Ped-

rsen (2013) (henceforth, GP), Glasserman and Xu (2013) (hence-

orth, GX) develop a dynamic portfolio control rule that is robust
1 Conceptually, ambiguity aversion is different from risk aversion defined in 

arkowitz (1952) where the probability of returns is known to investors. 
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to model and parameter ambiguity. By acknowledging ambiguity in

the estimated model, GX find that the robust trading rules guard

against ambiguity by trading less aggressively on signals from re-

turn predictors, and can significantly improve performance in out-

of-sample tests on historical data. GX distinguish between ambigu-

ity aversion and risk aversion, and document their different effects

on the optimal strategy. However, it is unclear how and why am-

biguity aversion and risk aversion differ in portfolio selection. 

Adopting GX’s robust optimization method, this paper inves-

tigates portfolio selection in the presence of ambiguity aversion

within the framework of GP. We extend GX’s model by further dis-

tinguishing between ambiguity aversion to returns and ambiguity

aversion to return predictors. Based on the Radon–Nikodym theo-

rem, we obtain the explicit forms of the constraints on these two

types of ambiguity aversion. Thus, we can separately model ambi-

guity aversion to returns and to return predictors, and clarify their

different effects on the optimal robust strategy. We derive the op-

timal robust portfolio in closed form, and characterize the proper-

ties of the robust trading rules as well as the unique mechanism

through which ambiguity aversion impacts the robust strategy. 

Our optimal trading strategy gives rise to two principles that

are similar to those documented in GP. First, due to transaction

costs, the optimal strategy remains to trade partially toward an aim

portfolio that minimizes the risk for a given level of return in the

whole trading period. However, in our model, the trading rate de-

pends not only on transaction costs and risk aversion, but also on

ambiguity aversion. Being ambiguity averse, investors trade faster

toward the aim portfolio. 

Second, the optimal strategy remains to aim in front of the

optimal portfolio derived from Markowitz’s (1952) mean-variance

model, implying that the aim portfolio is a weighted average of

the current Markowitz portfolio and the portfolio with the highest

risk-, ambiguity-, and costs-adjusted return in all future periods.

However, in the presence of ambiguity aversion, this future port-

folio is no longer simply the expected future aim portfolio as doc-

umented in GP. Rather, it is a combination of the expected future

aim portfolio and the current optimal portfolio. 

Importantly, our model gives rise to a third principle that is not

present in GP’s model, stating that the robust strategy also aims

for a low expected loss. Specifically, the aim portfolio loads less

on the securities with highly volatile predictors as well as those

with large and costly positions in the existing portfolio. Intuitively,

highly volatile predictors are more likely to result in large estima-

tion errors in a security’s returns, leading to a greatly biased posi-

tion in the security. There is potential for great losses to arise from

these biased positions of the resulting portfolio, particularly when

the positions and their associated transaction costs are large. This

provides a clear economic interpretation for the role that ambigu-

ity aversion plays in portfolio selection. 

Using data on commodity futures, we illustrate that the ro-

bust strategy indeed outperforms the non-robust strategy in out-

of-sample tests. Additionally, the improvement in performance is

particularly pronounced when transaction costs and the level of

predictor variability are high. We show that as a result of miti-

gating the effect of ambiguity, the robust portfolio has smaller and

more stable positions than the corresponding non-robust portfolio.

Meanwhile, simply scaling down the positions of the non-robust

portfolio is not able to achieve the effect of ambiguity aversion on

the optimal portfolio choice. 

Our research contributes to the literature on portfolio selection

and asset pricing with ambiguity aversion in three respects. First,

it complements the literature on ambiguity aversion and dynamic

asset allocation decisions. Maenhout (2004) considers a dynamic

portfolio problem of an investor who is averse to model ambiguity

in addition to market risk, and seeks robust decisions within the

framework of Anderson et al. (2003) . He finds that ambiguity aver-
ion dramatically decreases the optimal share of the portfolio allo-

ated to equities as a result of the high risk premium demanded by

mbiguity-averse investors. Garlappi et al. (2007) develop a model

ith multiple priors and ambiguity aversion, and find that the

ortfolios delivered by their model tend to over-weight safe assets

n the optimal allocations. Branger et al. (2013) analyze the optimal

tock-bond portfolio under both learning and ambiguity aversion,

nd find that both learning and ambiguity aversion impact the size

f the stock holdings and also induce some additional hedging de-

and for the uncertainty due to learning and ambiguity aversion. 

Previous studies generally confirm Chen and Epstein’s

2002) conjecture that ambiguity aversion and risk aversion

re substitutes for each other. By distinguishing between ambigu-

ty aversion to returns and ambiguity aversion to return predictors,

ur model shows that while return ambiguity aversion and risk

version impact the robust portfolio in the same fashion, the

mpacts of predictor ambiguity aversion and risk aversion differ.

f there is solely ambiguity aversion to returns, our results are

argely similar to those of GP’s model with a higher degree of

isk aversion. Thus, ambiguity aversion and risk aversion are not

ubstitutes for each other due to the presence of return predictor

mbiguity aversion. 

Second, this paper contributes to the literature by analyzing the

nique mechanisms through which ambiguity aversion helps im-

rove the performance of the robust trading strategy. While pre-

ious studies ( Garlappi et al., 2007; DeMiguel and Nogales, 2009;

lasserman and Xu, 2013 ) document the superior performance

f robust portfolios, the key drivers of the superior performance

re not theoretically analyzed. In contrast, we examine the roles

f return predictor variability and transaction costs in shaping

mbiguity-averse investors’ dynamic trading behavior. In particu-

ar, our model shows that investors prefer assets with low predic-

or variability, as estimation uncertainty is directly associated with

he variability of return predictors. We demonstrate that the aim

ortfolio loads less on the assets with large and costly positions

n the existing portfolio, in an effort to reduce the potential loss

ue to estimation errors. Our research provides economic interpre-

ations for investors’ trading behavior with ambiguity aversion, and

learly explains why the robust strategy is able to outperform the

on-robust strategy in out-of-sample tests. 

Finally, our analysis provides insight into asset pricing with am-

iguity aversion. Previous studies show both theoretically and em-

irically that ambiguity aversion, in addition to risk, affects op-

imal portfolio choices and, ultimately, equilibrium asset prices

 Anderson et al., 2003; Maenhout, 2004; Epstein and Schneider,

008; Jeong et al., 2015 ). One underlying assumption of these stud-

es is that risk is the channel through which ambiguity aversion

mpacts asset pricing. For example, Jeong et al. (2015) consider as-

et pricing models with stochastic differential utility incorporating

mbiguity aversion, and find that models with ambiguity aversion

ave lower relative risk aversion than models that ignore ambigu-

ty aversion. On the other hand, Anderson et al. (2009) show that

mbiguity seems to be different from risk and seems to have a dif-

erent effect on returns than does risk. Our analysis furthers our

nderstanding of how the ambiguity-return relationship and risk-

eturn relationship differ, and implies that the ambiguity-return re-

ationship hinges on both the variability of return predictors and

ransaction costs. For a given level of ambiguity aversion, high pre-

ictor variability and transaction costs are associated with high

mbiguity premium. 

The remainder of this paper is organized as follows.

ection 2 presents the model and characterizes the optimal

obust trading strategy. Section 3 analyzes the properties of the

ptimal robust strategy and illustrates its trading principles.

ection 4 provides a numerical analysis, while Section 5 concludes

he paper. 
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. Model and optimal trading strategy 

In this section, we first review GP’s dynamic model. Then, we

ncorporate ambiguity aversion into the model by allowing estima-

ion errors in both return and return predictor dynamics. Finally,

ollowing GX, we derive the optimal robust trading strategy, using

he robust optimization approach. 

.1. The model with no ambiguity 

We consider an investor who has access to S securities traded at

iscrete time t ∈ { 0 , 1 , 2 , . . . } . The probability space is ( �, F , { F t }, P ),

here � is the sample space, { F t } is a filtration, and P is the real

robability measure. The securities’ rates of return from time t to

 + 1 in excess of the risk-free rate are indicated by an S -column

eturn vector r t+1 (henceforth, returns) given by: 2 

 t+1 = B f t + u t+1 , (1) 

here f t is a K -column vector of return predictors, and B is an

 × K matrix of factor loadings. u 1 , u 2 , . . . , u t , . . . are i.i.d random

ectors, each of which follows a multivariate normal distribution

ith mean zero and covariance matrix �u . 

Eq. (1) implies the investor is able to forecast securities’ returns

 t+1 , based on the available information f t at time t , whereas B rep-

esents the influence of f t on the predicted returns. Further, f t is

ssumed to evolve according to the following mean-reverting pro-

ess: 

f t+1 = � f t + v t+1 , (2) 

here � is a K × K matrix of mean-reversion coefficients for the

redictors, satisfying � > 0 as well as I − � > 0 to ensure a sta-

ionary process. 3 v 1 , v 2 , . . . are the i.i.d shocks affecting the pre-

ictors, each of which is assumed to follow a multivariate normal

istribution with mean zero and covariance matrix �v . In addi-

ion, we assume that v t is independent of u t at any time t. Thus,

ov (u t , v t ) = 

(
�u 0 

0 �v 

)
, ∀ t . 

Let x t denote the vector of shares of the securities invested in

 portfolio at time t . Rebalancing the portfolio holdings from x t−1 

o x t incurs transaction costs. Following the literature, we assume

hat the transaction cost associated with this trading is given by:

 C t = 

1 

2 

�x T t ��x t , (3) 

here �x t = x t − x t−1 , and � is the cost matrix, which is symmet-

ic and positive definite. It means that a transaction of �x t shares

eads to a change in the average price by ��x t /2, yielding a to-

al transaction cost of 1 
2 �x T t ��x t . This cost specification is consis-

ent with that specified in GP and GX, and is motivated partly by

ractability. 

In GP’s model, the investor selects the dynamic trading strategy

 t ( t = 0 , 1 , 2 , · · · ) to maximize the present value of all future risk-

djusted returns, net of transaction costs: 

max 
 0 , x 1 , ···

E 0 

{∑ 

t 

ρt+1 

(
x T t r t+1 − γ

2 

x T t �u x t − ρ−1 

2 

�x T t ��x t 

)}
, (4) 

ubject to r t+1 = B f t + u t+1 , 

f t+1 = � f t + v t+1 , 
2 A security’s return is defined as r t + 1 = ( p t + 1 – p t )/ p t – r f , where p t and p t + 1 are 

he security’s prices at time t and t + 1, respectively, and r f is the risk-free rate for 

he period from time t to t + 1. If the security is a share of stock that pays dividends, 

hen p t is the actual price at time t , and p t + 1 is the actual price at time t + 1 plus 

he total cash dividends from time t to t + 1. 
3 I represents the identity matrix. � > 0 means that matrix � is positive definite. A
here �x 0 = 0 , ρ ∈ (0, 1) is the discount factor, and γ > 0 mea-

ures the investor’s risk aversion. Problem (4) is considered a guide

o select sensible strategies rather than a precise representation of

n investor’s preference. 

.2. The model in the presence of ambiguity aversion 

Now, we incorporate ambiguity aversion into GP’s model. As-

ume that ˜ F t represents the information that is known by investors

t time t. Following GX, we assume that the estimation errors in

eturns, denoted by e u,t+1 , and the estimation errors in return pre-

ictors, denoted by e v ,t+1 , can be written as follows: 

 u,t+1 = 

ˆ B f t − B f t = 

˜ E t ( r t+1 ) − E t ( r t+1 ) = 

˜ E t ( u t+1 ) , (5)

 v ,t+1 = 

ˆ � f t − � f t = 

˜ E t ( f t+1 ) − E t ( f t+1 ) = 

˜ E t ( v t+1 ) , (6)

here ˆ B and 

ˆ � represent the estimates of B and �, respectively.
˜ 
 t (·) is the conditional expectation operator with respect to the

robability measure ˜ P t that is induced by ˜ F t . 

Eqs. (5) and (6) imply that the underlying reason for estima-

ion errors is the limited information about the distributions driv-

ng returns and return predictors. To illustrate this point, we take

q. (5) as an example. Since a partial sample rather than the full

ample is used when regressing the return of a security on its pre-

ictors f , the estimated coefficients ˆ B in the regression are likely

iased. Thus, the predicted return 

˜ E t ( r t+1 ) = B f t + 

˜ E t ( u t+1 ) = 

ˆ B f t 
ased on these biased loadings can deviate greatly from its true

alue E t ( r t+1 ) = B f t , and their difference measures the estimation

rror ˜ E t ( u t+1 ) . Alternatively, we can interpret return predictors as

arious indicators for assessing the expected return of a security.

iven limited knowledge about the market, investors are not able

o accurately evaluate each indicator’s ability to predict returns,

nd thus, their assessment is only an approximation of reality. Note

hat the estimation errors defined in Eqs. (5) and (6) can arise from

isspecification in models or in the data-generating processes. 

Next, we constrain the size of estimation errors to reflect in-

estors’ aversion to ambiguity in our model. To this end, we con-

train the difference between the two probability measures ˜ P t and

 t , as this in turn implies that we constrain the difference between
˜ 
 t ( r t+1 ) and E t ( r t+1 ) as well as the difference between 

˜ E t ( f t+1 )

nd E t ( f t+1 ) . By Girsanov’s theorem, there exists z t such that both
˜ 
 t ( u t+1 ) = E t ( z t u t+1 ) and 

˜ E t ( v t+1 ) = E t ( z t v t+1 ) hold, where z t is

he Radon–Nikodym derivative of ˜ P t with respect to P t , or z t =
 ̃

 P t / d P t . Following Hansen and Sargent (2001) and Anderson et al.

2003) , we constrain the difference between the probability mea-

ures by making the relative entropy of the change of measures

atisfy E t ( z t log z t ) < η, where η is a constant. 

As u t and v t are both assumed to be normally distributed, us-

ng the change of measure theory, we can prove that the following

emma holds true: 4 

emma 1. At any time t, z t has a unique form: 

 t = 

∏ 

i = u, v 

exp 

(
e T i,t+1 �

−1 
i 

i t+1 − 1 

2 

e T i,t+1 �
−1 
i 

e i,t+1 

)
. (7) 

Given Eq. (7) , the relative entropy constraint E t ( z t log z t ) < η be-

omes: 

1 

2 

e T u,t+1 �
−1 
u e u,t+1 ≤ η1 , (8) 

1 

2 

e T v ,t+1 �
−1 
v e v ,t+1 ≤ η2 , (9) 
4 The proofs of this lemma and the following propositions are presented in the 

ppendix. 
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where η1 and η2 are two constants, satisfying η1 + η2 = η. 

In contrast with GX, we obtain the explicit unique form of the

Radon–Nikodym derivative z t , and split the relative entropy con-

straint into two ambiguity constraints. This split allows us to spec-

ify distinct degrees of ambiguity aversion to returns and to their

predictors in our model, 5 and thereby to clarify the different ef-

fects of these two types of ambiguity aversion on the optimal trad-

ing strategy. 

Inequalities (8) and (9) restrict the true values of expected re-

turns and return predictors to lie in an ellipsoid centered at their

respective estimated values. Compared with constraints such as

| e u,t+1 | < η1 and | e v ,t+1 | < η2 , these ellipsoidal constraints can cap-

ture the impacts of securities’ correlations on estimation errors.

Similarly, Goldfarb and Iyengar (2003), Garlappi et al. (2007) , and

Delage and Ye (2010) consider ( E t ( r t+1 ) − ˆ r t+1 ) 
T �−1 

r ( E t ( r t+1 ) −
ˆ r t+1 ) ≤ ε as a constraint in robust portfolio optimization, and show

that such a constraint is practically relevant. Lemma 1 provides a

theoretical explanation for such a specification of constraints in the

previous studies. 

Finally, being ambiguity averse, investors solve the following ro-

bust control problem 

6 : 

max 
x 0 , x 1 , ···

min 

e u , e v 

˜ E 0 

{
∞ ∑ 

t=0 

ρt+1 ˜ E t 

[ 
x T t r t+1 − γ

2 
x T t �u x t − ρ−1 

2 
�x T t ��x t 

+ 

1 
2 θ1 

e T u,t+1 �
−1 
u e u,t+1 + 

1 
2 θ2 

e T v ,t+1 �
−1 
v e v ,t+1 

]}
, 

(10)

subject to r t+1 = B f t + u t+1 , 

f t+1 = � f t + v t+1 , 

where θ1 > 0 and θ2 > 0 are the coefficients of aversion to ambi-

guity about returns and their predictors, respectively. 7 

Problem (10) is derived from Problem (4) with robust optimiza-

tion and two additional constraints Eqs. (8) and (9) as the ambi-

guity sets, where 1/ θ1 and 1/ θ2 are the two Lagrange multipli-

ers. As a function of η1 ( η2 ), θ1 ( θ2 ) translates the ambiguity set

into a penalty term, and a higher value of θ1 ( θ2 ) corresponds to a

higher η1 ( η2 ). In contrast with Problem (4) , Problem (10) incorpo-

rates ambiguity aversion to returns and to their predictors, and en-

sures that even if the worst case in the ambiguity sets occurs, per-

formance is still maximized ( Gilboa and Schmeidler, 1989; Hansen

and Sargent, 2001; Anderson et al., 2003 ). The occurrence of any

other cases in the ambiguity sets will not make the performance

worse, and thus the investor does not need to deviate from the

optimal strategy given the ambiguity sets. Such a strategy is actu-

ally just sub-optimal, but is robust to estimation uncertainty. 

We take return ambiguity as an example to provide an eco-

nomic interpretation for the model. Since the investor is not com-

pletely confident about the estimates of expected returns ˜ E t ( r t+1 ) ,

for a given confidence level c ∈ (0, 1), he/she first specifies an am-

biguity set e T u,t+1 �
−1 
u e u,t+1 / 2 ≤ η1 , such that the true values of ex-

pected returns E t ( r t+1 ) lie in this set. If the investor is less con-

fident about the estimated returns (a lower c ), he/she considers

E t ( r t+1 ) to be likely farther away from 

˜ E t ( r t+1 ) . In this case, he/she

tends to set a larger η1 , making the worst case even worse than
5 In the empirical analysis, GX consider the cases in which investors are only 

averse to return ambiguity or predictor ambiguity. For instance, they consider the 

case in which investors are only averse to predictor ambiguity by setting ˜ E t ( r t+1 ) = 

B f t , meaning that there are no estimation errors in returns. This method is not able 

to truly distinguish between ambiguity aversion to returns and ambiguity aversion 

to return predictors. 
6 Consistent with GP, we focus on an infinite time horizon, because the optimality 

equations are easier to solve than they are in the finite horizon case ( Merton, 1969 ). 

In addition, we can simplify our analysis by avoiding issues such as how to deal 

with the investment upon termination in the finite horizon case. 
7 These ambiguity coefficients are put in the denominator in Problem (10) to en- 

sure that high values of θ1 and θ2 correspond to high values of η1 and η2 . 

c

a

θ

e

c

a

m

η

he worst case with a smaller η1 . 
8 Thus, the corresponding optimal

obust strategy becomes more conservative than before. As noted

y Garlappi et al. (2007) and Cao et al. (2005) , this means that the

nvestor is more concerned about the estimation errors, or is more

verse to ambiguity in returns. 

The above interpretation also helps describe how θ1 and θ2 are

etermined. Take θ1 as an example. Since a low confidence level

 induces a large ambiguity set, the critical value η1 should sat-

sfy m ( e T 
u,t+1 

�−1 
u e u,t+1 / 2 ≤ η1 ) = 1 − c, where the measuring func-

ion m ( · ) represents the size of the set. Given the facts that c

s a positive number below 1 and that e T u,t+1 �
−1 
u e u,t+1 follows a

hi-square distribution, we use probability measure ˜ P t as the mea-

uring function m for size consistency. Then, η1 can be calculated

nder a chi-square cumulative distribution function. Accordingly,

1 can be determined, using Karush-Kuhn-Tucker conditions. 9 This

s in sharp contrast with GX, where ambiguity aversion coefficients

re arbitrarily set without using any particular method. 

.3. The optimal trading strategy with ambiguity aversion 

Using robust dynamic programming ( Iyengar, 2005; Hansen

t al., 2006; Glasserman and Xu, 2013 ), we can solve Problem

10) . The following proposition characterizes the conditions under

hich the solution exists, and also characterizes the optimal robust

rading strategy and its corresponding value function. 

roposition 1. If the following two conditions are both satisfied, 

ondition 1. �−1 
v + 2 ρθ2 A f f > 0 , 

ondition 2. J 1 = (γ + θ1 ) �u + ρ−1 � + ρA xx + ρ2 θ2 A x f (�
−1 
v +

 ρθ2 A f f ) 
−1 A 

T 
x f 

> 0 , then Problem ( 10 ) has a unique solution, which

s given by: 

 

∗
t = J −1 

1 

(
B f t + ρA x f (I + 2 ρθ2 �v A f f ) 

−1 
� f t + ρ−1 �x t−1 

)
, (11)

here the coefficient matrices A xx > 0, A xf , and A ff are jointly deter-

ined by the following equations: 

 xx = �̄ − �̄T J −1 
1 

�̄, 

 x f = �̄J −1 
1 

(B + ρA x f (I + 2 ρθ2 �v A f f ) 
−1 �) , 

 f f = 

1 
2 
( ̄�−1 A x f ) 

T J 1 ( ̄�
−1 A x f ) + ρ�T A f f (I + 2 ρθ2 �v A f f ) 

−1 �. 

(12)

The value function is given by: 

 ( x t−1 , f t ) = −1 

2 

x T t−1 A xx x t−1 + x T t−1 A x f f t + f T t A f f f t + A 0 . (13)

The corresponding conditional expectations of u t+1 and v t+1 are

iven by: 

 

∗
u,t+1 = −θ1 �u x 

∗
t , (14)

 

∗
v ,t+1 = −ρθ2 

(
�−1 

v + 2 ρθ2 A f f 

)−1 (
A 

T 
x f x 

∗
t + 2 A f f � f t 

)
. (15)
8 We can prove that the worst case in the case of a higher ambiguity coeffi- 

ient is worse than before. With the penalty term, the objective function includes 

 quadratic function of e u,t+1 ( e v ,t+1 ). If the investor’s degree of ambiguity aversion 

1 ( θ2 ) increases, the minimum value of the quadratic function decreases. 
9 It is noteworthy that e T u,t+1 �

−1 
u e u,t+1 follows a chi-square distribution because 

 u,t+1 approximately follows a multivariate normal distribution with mean zero and 

ovariance matrix associated with �u ( Wooldridge, 2013 ). In addition, we postulate 

 linear relation between the confidence level and the size of the ambiguity set, and 

let the measuring function be a probability measure. This is just one of the possible 

ethods to calculate the critical value η1 . The issue of how to accurately determine 

1 deserves more research. 
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From the proof of this proposition, we see that

ondition 1 guarantees the existence of the worst performance

ssociated with return predictors, while Condition 2 ensures

hat the objective function is concave in x t. The economic in-

erpretation is as follows. If Condition 1 does not hold, then for

t least one return predictor, investors are not able to find the

alues that make the performance worst. In other words, perfor-

ance deteriorates as the estimation errors in these predictors

ncrease. If Condition 2 is not satisfied, then for some assets, as

heir portfolio weights increase, the performance of the portfolio

mproves. In this case, there are no optimal holdings for these

ssets in the trading strategy: the greater the holdings of these

ssets, the better. However, such a strategy is not truly robust, as

he portfolio returns are incorrectly adjusted for ambiguity. This

s because e ∗v ,t+1 determined by Eq. (14) is not the worst-case

cenario for some predictors, given the fact that Condition 1 is

lso not satisfied in this case. 10 

Coefficient matrices in Eq. (12) are generally different from

hose in GP. If η1 = η2 = 0 , then investors are no longer ambigu-

ty averse. In this case, the last two terms that are used to penal-

ze ambiguity in the objective function in Problem (10) disappear,

nd the model reduces to GP’s model. From Proposition 1 , we see

hat θ1 solely impacts the first term in the expression of J 1 , chang-

ng it from γ�u to (γ + θ1 ) �u . However, θ2 impacts all coefficient

atrices J 1 , A xf , and A ff. 
11 This shows that if there is solely return

mbiguity aversion, our results are largely similar to those of GP’s

odel. The different impact of ambiguity aversion on the optimal

rading strategy arises primarily from ambiguity aversion to pre-

ictors. If we replace both θ1 and θ2 with θ in these coefficient

atrices, then they are the same as those in GX. Thus, unlike GX’s

odel, our model clarifies the distinct impacts of the two types of

mbiguity aversion on the optimal trading strategy. 

The value function V ( x t−1 , f t ) represents the maximum bene-

ts, adjusted for transaction costs, risk, and ambiguity, of all the

uture portfolios starting from time t , given the portfolio holdings

t time t – 1 and the predicting factors f t at time t . Note that

q. (13) and the value function in GP’s model are different, al-

hough both look like the same. This is because the coefficient ma-

rices with ambiguity aversion differ from those in GP’s model. 

Eqs. (14) and (15) represent the estimation errors in returns

nd predictors, respectively, under the worst-case scenario. How-

ver, these are not the actual estimation errors. Rather, they are

he largest possible estimation errors viewed by investors, as these

rrors are affected by ambiguity aversion coefficients θ1 and θ2 .

s we can see from Eqs. (14) and (15) , these estimation errors are

lso positively related to the return variability �u and predictor

ariability �v . This explains why conditional volatilities of asset

eturns play an important role in measuring premiums driven by

mbiguity aversion ( Jeong et al., 2015 ). 

. Properties of the optimal trading strategy with ambiguity 

version 

We now investigate the properties of the optimal strategy de-

ermined by Problem (10) . By examining Eq. (11) , we obtain three

rading principles, which have important practical implications.

he first two principles are similar to those in GP, but are modi-
10 It is easy to prove that if Condition 2 does not hold, then Condition 1 will not 

old. 
11 These matrices appear both on the left- and right-hand sides of the expres- 

ions of these matrices, as we are not able to provide the explicit expressions of 

hese matrices. However, with the contraction mapping principle, it is easy to prove 

hat the solutions of these equations exist and are unique. In the empirical analy- 

is, we calculate these matrices, using the iterative method of Ljungqvist and Sar- 

ent (2004) . 

p  

w  

b  

w

E

p

a

ed to reflect the impact of ambiguity aversion. The third one is a

ew principle, which is not present in GP. 

.1. The basic trading principles 

roposition 2. Trade partially toward the aim. 

i) The optimal portfolio can be written as: 

x ∗t = 

(
I − (κ + �̄) 

−1 
κ
)

x t−1 + (κ + �̄) −1 κ · ai m t , (16) 

where �̄ = ρ−1 �, κ = (γ + θ1 ) �u + ρA xx , and ai m t =
κ−1 ( B f t + ρA x f ̃

 E ∗t ( f t+1 ) ) . ˜ E ∗t (·) is the conditional expectation

operator under the worst-case scenario. 

ii) The weight of the aim portfolio is given by: 

(κ + �̄) −1 κ = I −
(
(γ + θ1 ) �u + �̄ + ρA xx 

)−1 
�̄. (17) 

The weight of the aim portfolio measures the speed of trading to-

ward the aim, and is called the trading rate. The trading rate in-

creases with θ1 and θ2 . 

Proposition 2 is in line with Proposition 2 in GP, stating that

he optimal portfolio is a weighted average of the existing portfo-

io x t−1 and an aim portfolio aim t . Thus, transaction costs make it

ptimal to trade slowly. However, Eq. (17) indicates that ambiguity-

verse investors trade faster toward the aim than those investors

ithout ambiguity aversion. 

Note that Eq. (16) looks different from GP’s Eq. (7) . GP’s

q. (7) is obtained by taking the partial derivative of both sides of

he valuation function with respective to x t−1 . Using this method,

ased on Eqs. (13) and (B.2) in the appendix, the optimal robust

trategy can be rewritten as follows: 

 

∗
t = x t−1 + �̄−1 A xx ( ( A xx ) 

−1 A x f f t − x t−1 ) . (18)

Now, we see that Eq. (18) is similar in format to GP’s Eq. (7) , al-

hough the coefficient matrices A xx and A xf in both equations differ.

owever, a comparison of Eq. (18) and GP’s Eq. (7) does not clearly

how the distinction between the robust and non-robust strategies.

o better understand the impact of ambiguity aversion on the opti-

al trading strategy, we plug the expressions of A 

nr 
xx and A 

nr 
x f 

, which

re obtained from GP’s Eqs. (A8) and (A9), into GP’s Eq. (7) and

implify the equation. This gives the following equation: 

(x nr 
t ) 

∗ = x nr 
t−1 + (γ�u + ρA 

nr 
xx + �̄) −1 (γ�u + ρA 

nr 
xx )(aim 

nr 
t − x nr 

t−1 ) , 

(19) 

here aim 

nr 
t = (γ�u + ρA 

nr 
xx ) 

−1 (B f t + ρA 

nr 
x f 

E t ( f t+1 )) , and the super-

cript nr represents the results for the corresponding non-robust

trategy. Eq. (16) is obtained using the same method. 

A comparison of Eqs. (16) and (19) shows that the effect of

version to return ambiguity can be interpreted as increasing the

isk aversion parameter from γ to γ + θ1 . Hence, the presence of

mbiguity aversion leads to a more conservative strategy. This is

onsistent with the findings in previous studies ( Chen and Epstein,

0 02; Maenhout, 20 06; Jeong et al., 2015 ). Importantly, compared

ith Eq. (19) , Proposition 2 indicates that ambiguity aversion also

mpacts the aim portfolio itself, with the expectations of return

redictors in Eq. (19) being replaced with their values under the

orst-case scenario. 12 To better understand how the impact of am-

iguity aversion on the optimal trading strategy differs from the
12 Unlike Eq. (19) , the aim portfolio in Eq. (16) is expressed in terms of ˜ E ∗t ( f t+1 ) , 

hich in turn depends on the optimal strategy x ∗t as shown by Eq. (15) . However, 

q. (18) shows that x ∗t is a function of x t−1 and f t . Plugging Eq. (18) into the aim 

ortfolio would eliminate x ∗t in the expression of the aim portfolio, allowing us to 

nalyze the properties of the aim portfolio. 
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Fig. 1. The aim portfolio in the presence of ambiguity aversion 

This figure shows the aim portfolio choice with two securities (assets 1 and 2). The Markowitz portfolio is the current optimal portfolio with ambiguity aversion in the ab- 

sence of transaction costs. A −1 
xx A x f E 

∗
t ( f t+1 ) is the portfolio that maximizes risk-, ambiguity-, and costs-adjusted returns at all future dates. E t ( · ) is the conditional expectation 

operator with respect to the probability measure ˜ P t that is induced by ˜ F t . E 
∗
t (·) is the conditional expectation operator under the worst-case scenario. The left panel shows 

the aim portfolio choice in the case of θ2 = 0 . 1 , while the right panel shows the aim portfolio choice in the case of θ2 = 1 . 
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impact of risk aversion, we rearrange the aim portfolio , and obtain

the second trading principle. 

Proposition 3. Aim in front of the target. 

(i) The aim portfolio can be written as: 

ai m t = κ−1 
(
( κ − ρA xx ) Markowit z t + ρA xx 

(
A 

−1 
xx A x f ̃

 E ∗t ( f t+1 ) 
))

, 

(20)

where Markowit z t = ( ( γ + θ1 ) �u ) −1 B f t is the current optimal

portfolio with ambiguity aversion in the absence of transac-

tion costs. A 

−1 
xx A x f ̃

 E ∗t ( f t+1 ) is the portfolio that maximizes risk-,

ambiguity-, and costs-adjusted returns at all future dates under

the worst-case scenario. 13 

ii) The second component in the aim portfolio can be written as: 

A 

−1 
xx A x f ̃

 E ∗t ( f t+1 ) = 

(
κ + A xx − κ J −1 

1 �̄
)−1 (

κ ˜ E ∗t (ai m t+1 ) 

+( A xx − κ J −1 
1 �̄) x ∗t 

)
, (21)

which means that strategy A 

−1 
xx A x f ̃

 E ∗t ( f t+1 ) is just a combination

of the worst-case expected aim portfolio ˜ E ∗t (ai m t+1 ) and the op-

timal portfolio x ∗t . Additionally, A xx − κ J −1 
1 

�̄ = 0 in the absence of

predictor ambiguity aversion. 

Proposition 3 reveals that compared with the non-robust case,

the robust aim portfolio is still the weighted average of the cur-

rent Markowitz portfolio and the future portfolio A 

−1 
xx A x f ̃

 E ∗t ( f t+1 ) .

However, A 

−1 
xx A x f ̃

 E ∗t ( f t+1 ) is no longer just the expected future aim

portfolio. Rather, it is a combination of the expected future aim

portfolio and the current optimal portfolio. This new property can

be illustrated in Fig. 1 . First, as noted by GP, portfolio aim t lies in

front of portfolio Markowitz t , due to the presence of transaction

costs. The weight of the current Markowitz portfolio in the robust

aim portfolio increases with return ambiguity aversion ( θ1 ). Thus,

return ambiguity aversion and risk aversion impact the aim port-

folio in the same fashion. On the other hand, the weight of the

future portfolio A 

−1 
xx A x f ̃

 E ∗t ( f t+1 ) increases with predictor ambiguity

aversion ( θ2 ). 

Second, the future portfolio A 

−1 
xx A x f ̃

 E ∗t ( f t+1 ) is a weighted av-

erage of ˜ E ∗t (ai m t+1 ) and x ∗t , due to the presence of factor ambi-

guity aversion, while it is equal to ˜ E t (ai m t+1 ) in GP’s model and
13 Given Eq. (13) , it is easy to prove that A −1 
xx A x f f t+1 is the trading strategy that 

maximizes the value function at time t + 1. 

 

p  

e  

p  
s equal to ˜ E ∗t (ai m t+1 ) with solely return ambiguity aversion. Intu-

tively, in the presence of predictor ambiguity, the estimated evo-

ution of predictors may deviate from the true evolution. To re-

uce the impact of the possible estimation biases, the future port-

olio A 

−1 
xx A x f ̃

 E ∗t ( f t+1 ) moves partially toward the optimal portfolio

 

∗
t , which is constructed based on both the existing portfolio x t−1 

nd current predictors f t as shown in Eq. (18) . In general, x ∗t has a

arger effect on A 

−1 
xx A x f ̃

 E ∗t ( f t+1 ) if the degree of predictor ambigu-

ty aversion ( θ2 ) is higher. As we can see from Fig. 1 , the future

ortfolio A 

−1 
xx A x f ̃

 E ∗t ( f t+1 ) is closer to x ∗t in the case of θ2 = 1 than

t is in the case of θ2 = 0 . 1 . 

In summary, Proposition 2 shows the effect of ambiguity aver-

ion on the current robust strategy, while Proposition 3 demon-

trates its effect on the robust strategy at future dates. Another

eading of Proposition 3 is that ambiguity aversion and risk aver-

ion impact the aim portfolio differently, and this difference arises

rimarily from aversion to factor ambiguity. To understand why

he principle stated in Proposition 3 works, we further investigate

he mechanism through which ambiguity aversion impacts the aim

ortfolio. 

.2. The additional trading principle with ambiguity aversion 

roposition 4. Aim for a low expected loss. 

(i) The aim portfolio can be expressed as follows: 

ai m t = κ−1 
(
(κ + �̄) J −1 

1 K f f t + ( J 1 − κ − �̄) J −1 
1 K x x t−1 

)
, (22)

where K f = B + ρA x f (I + 2 ρθ2 �v A f f ) 
−1 � and K x = −�̄ are the

adjustment coefficients for f t and x t−1 , respectively. This suggests

that in the aim portfolio, the weight of adjusted predicting factors

K f f t is (κ + �̄) J −1 
1 

, while the weight of the adjusted existing port-

folio K x x t−1 is ( J 1 − κ − �̄) J −1 
1 

. 

ii) In the presence of predictor ambiguity aversion, if the variability of

predictors �v is large, then K f f t is small. This implies that the aim

portfolio loads less on the highly volatile predictors. In addition,

if the holdings of securities in the existing portfolio are large and

costly (a low value of −�̄x t−1 ), then the aim portfolio loads less

on these securities. 

Proposition 4 explains the way in which ambiguity aversion im-

acts the aim portfolio, and furthers our understanding of how the

ffects of ambiguity aversion and risk aversion differ. The first im-

lication of Proposition 4 is that with ambiguity aversion to return
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Fig. 2. The effect of factor variability on the aim portfolio 

This figure shows the effect of return predictor variability on the aim portfolio choice with two securities (assets 1 and 2). Asset 1’s return predictors are more volatile than 

asset 2’s. The Markowitz portfolio is the current optimal portfolio with ambiguity aversion in the absence of transaction costs. E t ( · ) is the conditional expectation operator 

with respect to the probability measure ˜ P t that is induced by ˜ F t . The left panel considers the case in which θ2 = 0 . 1 , while the right panel considers the case in which θ2 = 1 . 
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14 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data _ library.html . 
15 
redictors, the adjustment coefficient K f is affected by �v . Without

mbiguity aversion, the aim portfolio loads more on securities with

ore persistent predictors (larger �), since such a trading strat-

gy not only generates a high expected return now, but also is ex-

ected to generate a high expected return for a longer time in the

uture (GP, 2013). However, Proposition 4 shows that if the pre-

ictors with a slower mean-reversion are highly volatile, the aim

ortfolio with ambiguity aversion should not give more weights to

hese predictors. Fig. 2 illustrates the impact of predictor variabil-

ty on portfolio positions. In the figure, both assets 1 and 2 have

he same mean-reverting speed in predictor dynamics, but asset

 

′ s predictor is more volatile. Since the aim portfolio downweights

ighly-volatile predictors, it loads more heavily on asset 2. In ad-

ition, the difference between these two positions increases with

he ambiguity aversion coefficient θ2 . 

Intuitively, if return predictors are highly volatile, then the esti-

ated mean-reverting coefficients � are more likely to be biased.

s a result, these estimated coefficients are not reliable, even if

hey are large. Investors who follow the strategy with these largely

iased estimates may experience huge losses, as asset returns are

ikely to be seriously misspecified. Hence, investors with ambiguity

version should trade toward an aim portfolio that is tilted toward

he less volatile return predictors. 

Another implication of Proposition 4 is that with ambiguity

version to predictors, the aim portfolio is also affected by trans-

ction costs � and existing asset holdings x t−1 . To reduce the po-

ential loss due to estimation errors, the aim portfolio should also

oad less on securities with large and costly existing positions. To

llustrate, we consider an optimal strategy with two assets. In the

rst case, the positions in the two assets in the existing portfolio

re the same, but the position in asset 1 has a higher transaction

ost. Fig. 3 -A shows that the current aim portfolio loads less on as-

et 1 than on asset 2. In the second case, the transaction costs of

he two assets are the same, while asset 1 has a larger position in

he existing portfolio. Fig. 3 -B shows that the aim portfolio loads

ess on asset 1, and this remains true until the positions in both

ssets are identical. 

This can be interpreted as follows. If the estimated mean-

everting coefficients � are biased, the future returns of corre-

ponding securities may be overestimated. In this case, the result-

ng upward-biased positions of these securities entail more trans-

ction costs, but are not able to achieve the predicted return lev-

ls. Moreover, these biased positions will have to be rebalanced in

ubsequent periods, which incurs further costs. As a consequence,

stimation errors may lead to substantial fluctuations in the secu-
ity positions over time, driving down the net returns. Even though

he estimated coefficients � are less likely biased with less volatile

redictors, the expected loss can be huge for securities with high

ransaction costs and large positions in the existing portfolio. Thus,

he effects of estimation errors on portfolio performance are more

ronounced if the existing security holdings are particularly large

nd costly. 

In summary, this third trading principle suggests two channels

hrough which the aim portfolio minimizes the expected loss. One

s to load less on securities with highly volatile predictors to re-

uce the likelihood of estimation errors occurring. The other is to

oad less on securities with large and costly existing positions to

educe the size of losses arising from estimation errors. This trad-

ng principle is intended to address the ambiguity aversion to re-

urn predictors. 

. Performance of the robust trading strategy: an empirical 

nvestigation 

This section investigates the effectiveness of the robust strategy,

sing data on various commodity futures, in order to illustrate how

he robust strategy can be applied in practice, and to identify the

rivers of its superior performance. 

.1. The data 

Following GP, we consider 15 commodity futures, including:

luminum, copper, nickel, zinc, lead, and tin from the London

etal Exchange (LME); gasoil from the Intercontinental Exchange

ICE); WTI crude, RBOB unleaded gasoline, and natural gas from

he New York Mercantile Exchange (NYMEX); gold and silver from

he New York Commodities Exchange (COMEX); and coffee, cocoa,

nd sugar from the New York Board of Trade (NYBOT). The sample

eriod is from January 1, 1996 to December 31, 2015 for all futures.

he data on futures prices is obtained from Bloomberg, the con-

ract multipliers are from the respective exchanges, and the risk-

ree rate is from Kenneth R. French’s website. 14 

For consistency with GP, we use the most liquid futures of all

aturities available to construct each futures’ data series. Based

n these series, we calculate the excess rate of return (henceforth,

eturns) on each futures at time t . 15 Unlike GP, all data is used
To calculate the rates of return, we always use the prices of a given contract. 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Fig. 3. The effects of transaction costs and asset positions on the aim portfolio 

This figure shows the effects of transaction costs (left panel) and initial asset positions (right panel) on the aim portfolio choice with two securities. The Markowitz portfolio 

is the current optimal portfolio with ambiguity aversion in the absence of transaction costs. E t ( · ) is the conditional expectation operator with respect to the probability 

measure ˜ P t that is induced by ˜ F t . The left panel considers the case in which asset 1 has higher average transaction costs than asset 2, while the right panel considers the 

case in which asset 1 has a larger initial position in the existing portfolio than asset 2. 

Table 1 

Summary statistics of data. 

Commodity Contract multiplier June–November 2015 (Rolling window) December 2015 (Investment window) 

Average daily 

returns (%) 

Standard deviation of 

daily returns (%) 

Average daily 

returns (%) 

Standard deviation of 

daily returns (%) 

Aluminum 25 −0.14 1.08 0.20 1.24 

Cocoa 10 0.02 0.96 −0.18 1.19 

Coffee 37,500 −0.07 2.10 0.29 1.66 

Copper 25 −0.21 1.59 0.13 1.36 

Crude 10 0 0 −0.30 2.72 −0.52 2.84 

Gasoil 100 −0.27 2.03 −1.11 2.71 

Gold 100 −0.09 0.88 −0.02 1.08 

Lead 25 −0.05 1.53 0.42 1.61 

NatGas 10,0 0 0 −0.20 2.46 0.34 5.24 

Nickel 6 −0.26 2.29 −0.03 1.55 

Silver 50 0 0 −0.08 1.60 −0.08 1.85 

Sugar 112,0 0 0 0.20 2.37 0.11 1.64 

Tin 5 0.09 1.75 −0.16 0.86 

Unleaded 42,0 0 0 −0.37 2.91 −0.29 2.98 

Zinc 25 −0.22 1.87 0.15 1.66 

This table reports summary statistics of daily rates of return and contract’s multipliers of various futures considered in our analysis. 
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for rolling out-of-sample tests to gauge the difference in perfor-

mance between robust and non-robust strategies. Specifically, for

each month from July 1, 1996, we estimate the model parame-

ters using the data on the predictors from the previous six months

( Moskowitz et al., 2012; Barroso and Santa-Clara, 2015 ). For exam-

ple, we use the data from January to June 1996 (referred to as

rolling window) to estimate model parameters for July 1996 (in-

vestment window). 16 Table 1 presents the summary statistics of

each futures’ daily returns for the last rolling window (June to

November 2015) and investment window (December 2015). 

4.2. Model estimation 

We first estimate the factor loadings B and the mean-reversion

coefficients � for return predictors. Following the literature ( Erb

and Harvey, 2006; Asness et al., 2013; Gârleanu and Pedersen,

2013 ), for the futures contract s , we choose predictors f 5 D, s , f 1 Y, s ,

and f 5 Y, s , which are the moving averages of daily returns over the
16 Note that the calculation of return predictors for the period from January to 

June 1996 may use historical data from the period from January 1991 to December 

1995. 

i  

t  

t  

t  

r  
ast five days, one year, and five years, divided by their respective

tandard deviations. When calculating the average of daily returns

ver the past year, we skip the most recent month’s return to avoid

he one-month reversal in returns ( Grinblatt and Moskowitz, 2004;

sness et al., 2013 ). To illustrate the estimation results, we report

he results for the last 6-month rolling window (June to November

015) as follows: 

 

s 
t+1 = −0 . 0011 + 0 . 0008 f 5 D,s 

t − 0 . 0174 f 1 Y,s 
t + 0 . 0 6 62 f 5 Y,s 

t + u 

s 
t+1 

(−0 . 07) (1 . 12) (−1 . 56) (1 . 48) 
, 

(23)

f 5 D,s 
t+1 

= 0 . 8099 f 5 D,s 
t + v 5 D,s 

t+1 
, f 1 Y,s 

t+1 
= 0 . 9923 f 1 Y,s 

t + v 1 Y,s 
t+1 

, 

f 5 Y,s 
t+1 

= 0 . 9963 f 5 Y,s 
t + v 5 Y,s 

t+1 
. (24)

The model parameters are estimated using feasible general-

zed least squares, and the numbers reported in the brackets are

he t -statistics. The results in Eq. (23) indicate short- and long-

erm momentum and medium-term reversals in commodity fu-

ures prices. In addition, the results in Eq. (24) confirm that the

eturn predictors are mean reverting with various mean-reversion
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ates. Based on these estimates, we can write the matrices of fac-

or loadings and the mean-reversion coefficients for the predictors

s follows: 17 

 = 

(
0 . 0 0 08 −0 . 0174 0 . 0 6 62 

)
� I 15 ×15 , 

= 

⎛ 

⎝ 

0 . 8099 

0 . 9923 

0 . 9963 

⎞ 

⎠ � I 15 ×15 , 
(25) 

here � denotes the Kronecker product of matrices, and I 15 × 15 is

he 15-by-15 identity matrix. 

Note that the estimation results in Eq. (23) differ substantially

rom those in GP and GX, in terms of the magnitude, sign, and

ignificance of the coefficients. The difference in magnitude of the

oefficients arises because, in this analysis, rates of return rather

han dollar returns (price changes) are used to calculate asset re-

urns and return predictors. The difference in the sign and signifi-

ance of some predictors arises because we use a 6-month window

o estimate Eq. (23) for our rolling out-of-sample tests, while GP’s

nd GX’s estimation period is more than 13 years, from January 1,

996 to January 23, 2009. With a short rolling window for estima-

ion, the significance of the estimates can be reduced, and the sign

f these estimates may vary across different estimation periods. 18 

Then, we estimate the variance-covariance matrices �u and �v .

ince our model ignores the estimation errors in these two matri-

es, we use the daily returns and predictors in investment win-

ows to calculate �u and �v to control for the effects of estima-

ion errors in these matrices on the performance of the optimal

trategies. Consistent with the model assumptions, both matrices

re assumed to be constants in an investment window. 

Third, following GP, we assume that transaction costs are pro-

ortional to the amount of risk � = λ�u , and set the multiple λ =
 × 10 −7 . Meanwhile, we set the absolute risk aversion γ = 10 −9 ,

hich means that for an agent with $1 billion under management,

he relative risk aversion is one. We also assume that annualized

iscount rate is 2%, meaning that with approximately 260 trading

ays in a year, the discount factor is ρ = 1 / (1 + 0 . 02 / 260) . 

Finally, we specify ambiguity aversion coefficients θ1 and

2 , based on the analysis in Section 2.2 . Take θ1 as an ex-

mple. Since e u,t+1 follows a multivariate normal distribution

ith mean zero and covariance matrix f T t ( F 
T F ) −1 f t �u , where

 

T = ( f −n , f −n +1 , . . . , f −1 ) is the rolling window’s predictor ma-

rix and n is the rolling window size ( Wooldridge, 2013 ),

 

T 
u,t+1 

( f T t ( F 
T F ) −1 f t �u ) 

−1 e u,t+1 follows the chi-square distribution 

2 (15). Thus, for any time t , the constraint η1 is given by: 

1 = 

1 

2 

f T t ( F 
T F ) −1 f t · m 

−1 (1 − c) , (26)

here m is the cumulative distribution function of χ2 (15), and

 is investors’ level of confidence in return estimates. Accord-

ng to Karush-Kuhn-Tucker conditions, if θ1 exists, e ∗u,t+1 in

q. (14) should satisfy (e ∗u,t+1 ) 
T �−1 

u e ∗u,t+1 / 2 = η1 . Similarly, we can

lso obtain an equation that establishes the relationship between

2 and η2 . Finally, these two equations are used to solve for θ1 

nd θ2 simultaneously by numerical iteration. For brevity, we as-

ume that θ1 and θ2 are constants over time, setting the values

qual to their respective estimated medians in the sample period.

sing this method, we obtain θ1 = 10 −10 and θ2 = 5 × 10 −7 for a

onfidence level of 90%. Given that different investors may have
17 The vector of the factors is f t = ( f 5 D, 1 
t , · · · , f 5 D, 15 

t , f 1 Y, 1 
t , · · · , f 1 Y, 15 

t , 

f 5 Y, 1 
t , · · · , f 5 Y, 15 

t ) T . 
18 In fact, this means that model parameters are estimated with estimation errors, 

nd this can help demonstrate the advantage of the robust trading rules. Similarly, 

nderson et al. (2009) also illustrate the contribution of ambiguity premium to as- 

et pricing by allowing model misspecification and insignificance of model param- 

ters. 

a  

r  

s  

a  

i

ifferent confidence levels, we also consider alternative values of

1 and θ2 in the analysis. 

.3. Performance of robust trading strategy 

To evaluate the performance of a trading strategy, we focus on

ts Sharpe ratio, which is defined as follows: 

R = 

average daily dollar returns 

stardard deviation of daily dollar returns 
×

√ 

260 . (27) 

Similar to GX, we use dollar returns rather than rates of return

o calculate Sharpe ratio. This is because when a portfolio is con-

tructed with futures contracts, it has no principal if ignoring the

utures margin, and thus the portfolio’s percentage returns cannot

e calculated. 

Table 2 reports the mean and standard deviation of daily dollar

eturns before transaction costs, the gross Sharpe ratios, and the

et Sharpe ratios (net of transaction costs) for the optimal strate-

ies with various ambiguity-aversion coefficient combinations ( θ1 ,

2 ). Non-robust in θ1 or θ2 represents the strategy with no robust-

ess in returns or predictors, meaning that there is no ambiguity

version about returns or predictors. In particular, the combination

non-robust in θ1 , non-robust in θ2 ) corresponds to the non-robust

trategy in GP, and ( θ1 = 10 −10 , θ2 = 5 × 10 −7 ) is referred to as the

ase-case robust strategy. 

The results in Table 2 show that in all cases the robust portfo-

io outperforms the non-robust one, in terms of gross Sharpe ratio.

n addition, the gross Sharpe ratio of the robust portfolio improves

s the ambiguity aversion coefficients increase. We note that the

ean and standard deviation of the robust portfolio returns are

ower than those of the non-robust portfolio returns. This suggests

hat the robust strategy generates a higher gross Sharpe ratio, be-

ause the dollar returns on the robust portfolio are less volatile

han those on the non-robust portfolio. As the degree of ambigu-

ty aversion increases, the effect of risk reduction becomes more

ignificant, leading to a higher gross Sharpe ratio. 

A comparison of the net Sharpe ratios of the robust and non-

obust strategies confirms that the robust strategy performs bet-

er. Importantly, the improvement in net Sharpe ratio of the robust

trategy over the non-robust one is much more pronounced than

he improvement in gross Sharpe ratio. Naturally, the Sharpe ra-

ios after transaction costs are reduced in all cases. The percentage

eduction in Sharpe ratio after transaction costs is smaller for the

obust strategy than for the non-robust strategy, indicating that the

obust strategy incurs relatively low transaction costs. Our findings

how that by accounting for ambiguity aversion, the robust strat-

gy is able to reduce the transaction costs associated with biased

ositions in securities with biased estimated returns and predic-

ors, thereby improving net Sharpe ratio in a more significant way

han does the non-robust strategy. 

To understand why the robust strategy is better able to reduce

he volatility of returns and transaction costs, Fig. 4 depicts the po-

itions of gold futures in the base-case robust and the non-robust

ortfolios. 19 We see from Fig. 4 -A that the position of gold fu-

ures in the non-robust portfolio is large and fluctuates substan-

ially over time, while the position in the robust portfolio is small

nd less volatile. To examine the underlying reason for this phe-

omenon, we focus on the period from January 2006 to December

007, and depict, in Fig. 4 -B, the positions of the two strategies

long with the monthly returns on gold futures for the same pe-

iod. We note that the positions of both strategies change as a re-

ult of fluctuations of the futures returns, as past returns are used

s predictors to forecast future returns in both strategies. Since the
19 We depict the gold futures as an example, since its position is the largest one 

n both the robust and non-robust portfolios. 
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Table 2 

Out-of-sample performance for various strategies. 

Non-robust in θ2 θ2 = 5 × 10 −8 

Mean return SD of returns Gross SR Net SR Mean return SD of returns Gross SR Net SR 

Non-robust in θ1 8.90 × 10 6 1.96 × 10 8 0.73 0.14 4.40 × 10 6 9.46 × 10 7 0.75 0.48 

θ1 = 10 −10 8.29 × 10 6 1.78 × 10 8 0.75 0.17 4.27 × 10 6 8.94 × 10 7 0.77 0.50 

θ1 = 10 −9 5.32 × 10 6 9.56 × 10 7 0.90 0.39 3.37 × 10 6 6.07 × 10 7 0.90 0.61 

θ2 = 5 × 10 −7 θ2 = 5 × 10 −6 

Mean return SD of returns Gross SR Net SR Mean return SD of returns Gross SR Net SR 

Non-robust in θ1 2.51 × 10 6 4.58 × 10 7 0.89 0.71 1.27 × 10 6 1.76 × 10 7 1.16 1.05 

θ1 = 10 −10 2.47 × 10 6 4.42 × 10 7 0.90 0.73 1.26 × 10 6 1.73 × 10 7 1.17 1.06 

θ1 = 10 −9 2.18 × 10 6 3.40 × 10 7 1.04 0.85 1.19 × 10 6 1.50 × 10 7 1.28 1.16 

This table reports out-of-sample Sharpe ratios (SR) for the non-robust strategy and various robust strategies before and after transaction costs, as well 

as means and standard deviations (SD) of daily dollar returns of these strategies before transaction costs. Non-robust in θ 1 and θ2 correspond to the 

strategies with no robustness in returns ( u t ) and in return predictors ( v t ), respectively. The out-of-sample period is from July 1, 1996 to December 31, 

2015. 
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20 When some or all the predictors have a particularly high level of variability 

(e.g., λ = 10 × �v ), Condition 1 in Proposition 1 is not satisfied, and thus no esti- 

mation error in predictors under the worst-case scenario ( e ∗v ,t+1 ) can be identified. 

Intuitively, since the predictors are so volatile that investors no longer trust the esti- 

mate of �, we cannot find the values of the predictors that minimize performance. 

In our numerical analysis, Conditions 1 and 2 are not binding. 
gold futures returns are high prior to June 2006, the position of the

non-robust portfolio is rebalanced from short selling prior to June

2006 to buying long for the period June to October 2006, while

the robust strategy is less aggressive in building up a large gold

position in the same period. Since the futures returns are actu-

ally low from June to October 2006, the non-robust strategy suf-

fers larger losses. Moreover, the non-robust strategy’s position de-

cays substantially from November 2006 to March 2007 in response

to the low predictors prior to November, which incurs additional

transaction costs. This clearly shows the impact of estimation er-

rors of on portfolio positions. 

Over the whole sample period, a large percentage of transac-

tions of the non-robust strategy are attributable to over-responses

to biased estimated returns and predictors. In contrast, the robust

strategy trades less aggressively than the non-robust strategy. This

explains why the non-robust strategy entails substantial transac-

tion costs and generates particularly low net Sharpe ratios com-

pared with the robust strategy. Our result is in line with Garlappi

et al.’s (2007) finding that the portfolio weights derived from the

model with ambiguity aversion are less unbalanced and fluctuate

much less over time than do the portfolio weights from the stan-

dard mean-variance model. 

Proposition 3 indicates that the robust and non-robust strate-

gies differ because of their distinct aim portfolios. To see this,

Fig. 4 -C depicts the positions of gold futures in the aim portfolios

of both strategies. We note that the moving trends and fluctua-

tions in the positions of the aim portfolios for the two strategies

are similar to those observed in Fig. 4 -A. This indicates that the

substantial fluctuations in the position of the non-robust strategy

are mainly due to the substantial changes in the position of its aim

portfolio. 

4.4. Impacts of transaction costs and predictor variability on 

performance 

Proposition 4 indicates that the key to the superior performance

of the robust strategy is that ambiguity aversion to predictors leads

to small positions in the securities with highly volatile predic-

tors and those with large and costly existing portfolio positions.

Hence, the improved performance of the robust strategy is related

to the levels of transaction costs and predictor variability. To illus-

trate, we consider three different levels of transaction costs: low

costs ( λ = 5 × 10 −8 ), medium costs ( λ = 5 × 10 −7 ), and high costs

( λ = 5 × 10 −6 ), as well as three levels of predictor variability: low

variability (1 × �v ), medium variability (2 × �v ), and high vari-
bility (4 × �v ). 
20 For this exercise, we consider the robust strate-

ies with non-robustness in θ2 (henceforth, without θ2 ) and var-

ous values of θ2 . In all the cases considered, θ1 is set equal to

he base-case value. The performance measures include the gross

nd net Sharpe ratios of these strategies, as well as their means

f daily dollar returns (MR) and means of daily dollar transaction

osts (MC) expressed as the percentage of those of the correspond-

ng strategies without θ2 . 

Panel A of Table 3 reports the performance of various portfolios

n the cases of low, medium, and high transaction costs. In terms

f net Sharpe ratio, the strategy with θ2 outperforms the strategy

ithout θ2 for any given level of transaction costs, which is con-

istent with the findings in Table 2 . Moreover, for any given θ2 ,

he improvement in net Sharpe ratio becomes more pronounced as

ransaction costs increase. However, in terms of gross Sharpe ratio,

he same does not hold true. The gross Sharpe ratios of the strat-

gy with relatively low values of θ2 are even lower than the gross

harpe ratio of the strategy without θ2 when transaction costs are

igh. This is because, compared with the strategy without θ2 , the

trategy with θ2 is more conservative. As the transaction costs in-

rease, the strategy with θ2 will lower the positions of all secu-

ities in the portfolio, reducing its ability to capture high returns.

his is reflected in the values of MR, which are all less than 1 and

ecline as transaction costs increase for any given θ2 . However,

ompared with the strategy without θ2 , for any strategy with θ2 ,

he reduction in TC is greater than the reduction in MR, which is

articularly pronounced in the case of high transaction costs. Thus,

he strategy with θ2 is better able to improve its net Sharpe ratio

ompared with the strategy without θ2 , when transaction costs are

articularly high. 

Panel B of Table 3 reports the performance of various strategies

n the cases of low, medium, and high levels of predictor variabil-

ty. For any given level of θ2 , we find that the improvement in net

harpe ratio of the strategy with θ2 becomes more pronounced,

s the predictors become more volatile. While the improvement in

ross Sharpe ratio of the strategy with θ2 decreases slightly with

redictor variability in the case of θ2 = 5 × 10 −8 , it increases with

redictor variability in the other two cases. For any given θ2 , while

oth MR and TC of the robust portfolio with θ2 decline as the level

f predictor variability rises, the decline in TC is greater than the

ecline in MR. Thus, the strategy with θ2 is better able to reduce
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Fig. 4. The positions of gold futures in the robust and non-robust strategies 

A and B display the positions of gold futures in the robust and non-robust strategies over time. C displays gold positions in the robust and non-robust aim portfolios over 

time. 

Table 3 

Out-of-sample performance for various robust strategies with different transaction costs and predictor variability. 

Panel A: Performance for various strategies with various transaction costs 

λ = 5 × 10 −8 (Low costs) λ = 5 × 10 −7 (Medium costs) λ = 5 × 10 −6 (High costs) 

Gross SR Net SR MR TC Gross SR Net SR MR TC Gross SR Net SR MR TC 

Non-robust in θ2 1.52 1.20 1 1 0.75 0.17 1 1 0.49 −0.43 1 1 

θ2 = 5 × 10 −8 1.65 1.45 0.77 0.45 0.77 0.50 0.51 0.23 0.44 0.06 0.30 0.14 

θ2 = 5 × 10 −7 1.84 1.71 0.56 0.19 0.90 0.73 0.30 0.08 0.48 0.23 0.13 0.04 

θ2 = 5 × 10 −6 2.18 2.09 0.35 0.07 1.17 1.06 0.15 0.02 0.69 0.51 0.06 0.01 

Panel B: Performance for various strategies with various levels of factor variability 

1 × �v (Low variability) 2 × �v (Medium variability) 4 × �v (High variability) 

Gross SR Net SR MR TC Gross SR Net SR MR TC Gross SR Net SR MR TC 

Non-robust in θ2 0.75 0.17 1 1 0.75 0.17 1 1 0.75 0.17 1 1 

θ2 = 5 × 10 −8 0.77 0.50 0.51 0.23 0.76 0.54 0.43 0.16 0.76 0.57 0.35 0.11 

θ2 = 5 × 10 −7 0.90 0.73 0.30 0.08 0.92 0.77 0.23 0.05 0.94 0.82 0.19 0.03 

θ2 = 5 × 10 −6 1.17 1.06 0.15 0.02 1.24 1.14 0.12 0.01 1.322 1.23 0.09 0.01 

This table reports out-of-sample Sharpe ratios (SR), means of daily dollar returns (MR), and means of daily dollar transaction costs (TC) for various robust 

strategies with different levels of transaction costs and predictor variability. MR and TC of each strategy are expressed as the percentage of the corresponding 

values for the strategy with no robustness in θ2 . For all robust strategies considered, θ1 = 10 −10 . We consider three different levels of transaction costs: low 

costs ( λ = 5 × 10 −8 ), medium costs ( λ = 5 × 10 −7 ), and high costs ( λ = 5 × 10 −6 ), where λ = 5 × 10 −7 is the base-case transaction cost in our analysis. We 

consider three levels of predictor variability: 1 × �v , 2 × �v , and 4 × �v . The out-of-sample period is from July 1, 1996 to December 31, 2015. 
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Fig. 5. Gold positions in the robust and scaled portfolios as well as cumulative dollar returns of the robust, non-robust, and scaled non-robust portfolios 

This figure depicts the gold positions in the robust and scaled non-robust portfolios as well as cumulative dollar returns after transaction costs of the robust, non-robust, 

and scaled non-robust portfolios for the period from January 2, 1997 to December 31, 2015. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Out-of-sample performance of non-robust, scaled non-robust, and robust 

strategies. 

Mean return SD of returns Gross SR Net SR 

Non-robust 8.53 × 10 6 1.98 × 10 8 0.70 0.09 

Scaled non-robust 1.81 × 10 6 4.77 × 10 7 0.61 0.33 

Robust 2.36 × 10 6 4.42 × 10 7 0.86 0.68 

This table reports out-of-sample Sharpe ratios (SR) for the non-robust strat- 

egy, scaled non-robust strategy, and base-case robust strategy before and after 

transaction costs, as well as means and standard deviations (SD) of daily dollar 

returns of these strategies before transaction costs. The out-of-sample period 

is from January 2, 1997 to December 31, 2015. 
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transaction costs due to estimation errors when predictor variabil-

ity is high. This is because our model indicates that the holdings

of securities in its corresponding portfolio are affected by predic-

tor variability. Collectively, the results suggest that as predictors

become more volatile, by loading less on securities with highly

volatile predictors, the strategy with θ2 is better able to deliver

superior performance than the strategy without θ2 . 

4.5. Robust versus scaled non-robust strategies 

Our analysis shows that as a result of controlling for estima-

tion risk, the robust portfolio has smaller positions than the cor-

responding non-robust portfolio. Interestingly, Barroso and Santa-

Clara (2015) document that the position of the momentum strat-

egy can be scaled down to practically eliminate the crash risk of

momentum. Kan and Zhou (2007) and DeMiguel et al. (2015) pro-

pose to control for estimation risk by scaling down the positions

of the Markowitz portfolio in the optimal strategy. In this section,

we evaluate the performance of the base-case robust strategy rel-

ative to that of a scaled non-robust strategy to better understand

the role of ambiguity aversion in portfolio selection. 

Inspired by Barroso and Santa-Clara (2015) , at each time the

model is updated, we scale down the non-robust portfolio in the

next investment period as follows: 

x s t = sx nr 
t = 

σ R 
−6 

σ N 
−6 

x nr 
t , (28)

where σ R 
−6 and σ N 

−6 are the standard deviations of the previous 6-

month realized dollar returns of the robust and non-robust port-

folios, respectively. x t 
nr is the position of the original non-robust

portfolio at time t . Clearly, the variance of the scaled non-robust

portfolio approximately equals that of the robust portfolio. 

Fig. 5 A depicts the positions of gold futures in the robust port-

folio and the scaled non-robust portfolio, and Fig. 5 B displays the

cumulative dollar returns on the robust, non-robust, and scaled

non-robust strategies after transaction costs. While the gold posi-

tion in the scaled non-robust portfolio is generally larger than the

position in the robust portfolio, it is much smaller than the posi-

tion in the original non-robust portfolio as illustrated in Fig. 4 A.

This explains why in Fig. 5 B the moving trend of the cumulative

dollar returns of the scaled non-robust portfolio and the robust

portfolio are similar, and why the volatilities of these portfolios
re significantly reduced compared with that of the original non-

obust portfolio. 

Table 4 reports the Sharpe ratios of the robust, non-robust, and

caled non-robust portfolios, as well as their mean and standard

eviation of daily dollar returns before transaction costs. We note

hat while the gross Sharpe ratio of the scaled non-robust portfo-

io is slightly lower than that of the original non-robust portfolio,

ts net Sharpe ratio is much higher. This provides strong evidence

hat by scaling down positions, the scaled non-robust portfolio can

ower transaction costs and portfolio volatility, thereby improving

et Sharpe ratio. However, both the gross and net Sharpe ratios

f the scaled non-robust portfolio are still lower than those of

he robust portfolio. The reason is that scaling down positions of

he non-robust portfolio not only lowers its transaction costs, but

lso reduces its ability to capture high returns. In contrast, while

he robust trading strategy is also conservative about building up

arge positions, it particularly loads less on the assets with highly

olatile factors and those with high and costly existing positions.

hus, the robust portfolio is able to generate higher average daily

ollar returns than the scaled non-robust portfolio, resulting in a

igher Sharpe ratio. 

To better understand the superior performance of the robust

ortfolio relative to the scaled non-robust portfolio, using GP’s

ndings, we rearrange Eq. (28) as follows: 

 

s 
t = sx nr 

t = x s t−1 + �̄−1 A 

nr 
xx (s × aim 

nr 
t − x s t−1 ) 

= x s t−1 + �̄−1 A 

nr 
xx 

(
∞ ∑ 

τ= t 
z (1 − z) 

τ−t 
E t (s × Markowitz nr 

τ ) − x s t−1 

)
, 

(29)
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here z = (γ�u + ρA 

nr 
xx ) 

−1 (γ�u ) is the weight of the ex-

sting Markowitz portfolio in the non-robust aim portfolio.

q. (29) shows that the scaling factor s is applied solely to the

arkowitz portfolio in the non-robust strategy, while the trading

ate �̄−1 A 

nr 
xx and the weight of the existing Markowitz portfolio z

emain unchanged. In contrast, to mitigate the effect of estimation

rrors, the robust strategy adjusts not only the rate of trading to-

ard the aim portfolio but also the components of the aim port-

olio, thereby resulting in reduced portfolio positions. It follows

hat simply scaling down the position of the non-robust strategy

ithout taking ambiguity aversion into consideration is not able

o achieve the superior out-of-sample performance of the robust

trategy. 

. Conclusion 

Previous work in the finance literature documents that security

eturns are predictable; however, the predicted returns are just an

pproximation of reality, due to the presence of model and param-

ter uncertainties. Estimation errors in security returns could lead

o poor portfolio performance, particularly when transaction costs

re high. This paper investigates the optimal portfolio choice in

he presence of transaction costs and ambiguity aversion. Adopt-

ng GX’s robust optimization method, we extend GP’s model by in-

orporating ambiguity aversion into the model framework. Unlike

X’s model, we allow investors to have different degrees of am-

iguity aversion to returns and to return predictors. We not only

erive the optimal robust dynamic trading strategy in closed form,

ut also characterize its properties and clarify the unique mech-

nism through which the robust strategy improves out-of-sample

erformance over the non-robust strategy. 

Similar to GP’s model, our model indicates that the optimal

trategy remains to trade partially toward an aim portfolio as

ell as to aim in front of the optimal portfolio derived from

arkowitz’s (1952) model. In contrast with GP’s non-robust strat-

gy, our robust strategy also aims to reduce the expected loss aris-

ng estimation errors. Investors with ambiguity aversion to return

redictors trade toward an aim portfolio that loads less on highly

olatile predictors. Additionally, the aim portfolio loads less on se-

urities with large and costly existing portfolio holdings. Essen-

ially, the robust strategy is able to minimize the impacts of esti-

ation errors on portfolio performance, by reducing the positions

f securities with great parameter uncertainty as well as those

ith great potential losses associated with parameter ambiguity.

his is the key driver of the superior performance of the robust

trategy relative to the non-robust strategy. 

Using data on commodity futures, we show that the robust

trategy outperforms the non-robust strategy in out-of-sample

ests. We further find that the robust strategy is better able to

mprove its performance relative to the non-robust strategy when

ransaction costs and predictor variability are larger. Simply scaling

own the position of the non-robust portfolio is not able to achieve

he superior performance of the corresponding robust strategy. 

ppendix A. Proof of Lemma 1 

Suppose that at any time t , we can specify z t as follows: 

 t = 

∏ 

j= u, v 

exp 

(
e T j,t+1 �

−1 
j 

j t+1 − 1 

2 

e T j,t+1 �
−1 
j 

e j,t+1 

)
. (A.1) 

First, we need to prove that z t is the Radon–Nikodym derivative.

o this end, for ∀ A ∈ F t , set 

˜ 
 t (A ) = 

∫ 
A 

z t d P t , (A.2) 

hen 

˜ P t satisfies countable additivity, and 

˜ P t (A ) ≥ 0 holds true as z t 
0. According to Eq. (A.1) , given that u t+1 and v t + 1 are mutually
ndependent and are both normally distributed under P t , we have

he following: 

˜ 
 t (�) = 

∫ 
�

z t d P t = E t ( z t ) = 1 . (A.3)

Thus, ˜ P t is a probability measure. In addition, ∀ A ∈ F t , if P t (A ) =
 , then 

˜ P t (A ) = 0 , indicating that ˜ P t is absolutely continuous with

espect to P t . According to the Radon–Nikodym theorem, z t is the

adon–Nikodym derivative of ˜ P t with respect to P t . 

Next, the characteristic functions of u t+1 and v t+1 under ˜ P t sat-

sfy: 

( u t+1 , v t+1 ) = 

˜ E t 
[
exp (ib T u u t+1 + ib T v v t+1 ) 

]
= 

∫ 
� exp (ib T u u t+1 + ib T v v t+1 ) z t d P t , 

(A.4) 

here i is the imaginary unit in a complex number, satisfying

 

2 = −1. Plugging Eq. (A.1) into Eq. (A.4) yields: 

( u t+1 , v t+1 ) 

= E t 

[ 

exp 

( ∑ 

j= u, v 

(ib T j j t+1 + e T j,t+1 �
−1 
j 

j t+1 − 1 

2 

e T j,t+1 �
−1 
j 

e j,t+1 ) 

) ] 

. 

(A.5) 

Taking u t+1 as an example, we simplify the characteristic func-
ion as follows: 

 t 

[
exp 

(
ib T u u t+1 + e T u,t+1 �

−1 
u u t+1 − 1 

2 
e T u,t+1 �

−1 
u e u,t+1 

)]
= (2 π) −

S 
2 | �u | − 1 

2 

∫ ∞ 

−∞ 

xp 
(
ib T u u t+1 + e T u,t+1 �

−1 
u u t+1 − 1 

2 
e T u,t+1 �

−1 
u e u,t+1 − 1 

2 
u T t+1 �

−1 
u u t+1 

)
d u t+1 

= exp 
(
ie T u,t+1 b u + 

1 
2 

b T u �
−1 
u b u 

)
. 

(A.6) 

Since u t+1 and v t+1 are mutually independent under P t , simpli-

ying the characteristic function gives: 

( u t+1 , v t+1 ) = 

∏ 

j= u, v 

exp 

(
ie T j,t+1 b j + 

1 

2 

b T j �
−1 
j 

b j 

)
. (A.7)

Thus, u t+1 and v t+1 are mutually independent, and each fol-

ows the normal distribution under ˜ P t , or u t+1 ∼ N( e u,t+1 , �u ) and

 t+1 ∼ N( e v ,t+1 , �v ) . This shows that the specification of z t in

q. (A.1) satisfies E t ( z t u t+1 ) = e u,t+1 and E t ( z t v t+1 ) = e v ,t+1 in our

odel. Moreover, according to the Radon–Nikodym theorem, this

orm of the Radon–Nikodym derivative is the unique form that sat-

sfies these requirements in our model. 

Finally, given Eq. (A.1) , the relative entropy constraint can be

implified as: 

 t ( z t log z t ) = 

∫ 
� log z t d ̃  P t 

= 

1 
2 

e T u,t+1 �
−1 
u e u,t+1 + 

1 
2 

e T v ,t+1 �
−1 
v e v ,t+1 ≤ η. 

(A.8) 

Consequently, we can further divide the relative entropy con-

traint as follows: 

1 

2 

e T u,t+1 �
−1 
u e u,t+1 ≤ η1 , 

1 

2 

e T v ,t+1 �
−1 
v e v ,t+1 ≤ η2 . (A.9) 

Apparently, when the two constraints in Eq. (A.9) both hold, the

elative entropy constraint in Eq. (A.8) holds and also η = η1 + η2 . 

ppendix B. Proof of Proposition 1 

For the optimization problem (10) , denote: 

 1 ( x t , f t ) = x T t B f t − γ

2 

x T t �u x t − 1 

2 

�x T t �̄�x t , (B.1)

here �̄ = ρ−1 �. Then, the value function can be written as: 
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V t = max 
x t 

min 

( 
e u,t+1 

e v ,t+1 
) 

[ Q 1 ( x t , f t ) 

+ 

˜ E t 

(
x T t u t+1 + 

1 

2 θ1 

e T u,t+1 �
−1 
u e u,t+1 + 

1 

2 θ2 

e T v ,t+1 �
−1 
v e v ,t+1 + ρV t+1 

)
(B

Let 

 t + 1 = −1 

2 

x T t A xx x t + x T t A x f f t+1 + f T t+1 A f f f t+1 + A 0 . (B.3)

According to Gârleanu and Pedersen (2013) , we obtain: 

 t = max 
x t 

min 

( 
e u,t+1 

e v ,t+1 
) 

[ Q 1 ( x t , f t ) + ρQ 2 ( x t , f t ) + f u ( e u,t+1 , x t ) 

+ f v ( e v ,t+1 , x t , f t ) ] , (B.4)

where Q 2 ( x t , f t ) = − 1 
2 x 

T 
t A xx x t + x T t A x f � f t + f T t �

T A f f � f t + A 0 +
(�1 / 2 

v e ) T A f f (�
1 / 2 
v e ) , 21 

f u ( e u,t+1 , x t ) = 

1 

2 θ1 

e T u,t+1 �
−1 
u e u,t+1 + x T t e u,t+1 , 

f v ( e v ,t+1 , x t , f t ) = 

1 

2 θ2 

e T v ,t+1 �
−1 
v e v ,t+1 + ρe T v ,t+1 A f f e v ,t+1 

+ ρx T t A x f e v ,t+1 + 2 ρ(� f t ) 
T A f f e v ,t+1 

= e T v ,t+1 

(
1 

2 θ2 

�−1 
v + ρA f f 

)
e v ,t+1 + ρ

(
x T t A x f + 2 (� f t ) 

T 
A f f 

)
e v ,t+1 . 

Based on Eq. (B.4) , if �−1 
v + 2 ρθ2 A f f > 0 holds (Condition 1 in

Proposition 1 ), then the expectations of u t+1 and v t+1 under the

worst-case scenario are: 

e ∗u,t+1 = arg min 

e u,t+1 

f u ( e u,t+1 , x t ) = −θ1 �u x t , (B.5)

e ∗v ,t+1 = arg min 

e v ,t+1 

f v ( e v ,t+1 , x t , f t ) 

= −ρθ2 (�
−1 
v + 2 ρθ2 A f f ) 

−1 (A 

T 
x f x t + 2 A f f � f t ) . (B.6)

Plugging Eqs. (B.5) and (B.6) into Eq. (B.4) and rearranging it

yields: 

 t ( x t−1 , f t ) = max 
x t 

{
Q 1 ( x t , f t ) + ρQ 2 ( x t , f t ) − θ1 

2 
x T t �u x t 

− ρ2 θ2 

2 
(A 

T 
x f 

x t + 2 A f f � f t ) 
T 
(�−1 

v + 2 ρθ2 A f f ) 
−1 

(A 

T 
x f 

x t + 2 A f f � f t ) 
} 

. 

(B.7)

To solve the above optimization problem, we rearrange V t as

follows: 

 t = max 
x t 

(
−1 

2 

x T t J 1 x t + x T t J 2 + J 3 

)
, (B.8)

where 

J 1 = (γ + θ1 ) �u + �̄ + ρA xx + ρ2 θ2 A x f (�
−1 
v + 2 ρθ2 A f f ) 

−1 A 

T 
x f , 

J 2 = B f t + �̄x t−1 + ρA x f (I + 2 ρθ2 �v A f f ) 
−1 � f t . 

22 
21 In Q 2 ( x t , f t ), e is a unit vector, and the last term is obtained from 

E t ( z t+1 v T t+1 A f f v t+1 ) = e T v ,t+1 A f f e v ,t+1 + (�1 / 2 
v e ) T A f f (�

1 / 2 
v e ) . 

22 I is the identity matrix. Since J 3 does not impact the optimal trading strategy, 

its expression is not provided for brevity. 

c

A  

 

θ

If J 1 > 0 holds (Condition 2 in Proposition 1 ), then Problem

10) has a unique solution 

 

∗
t = J −1 

1 J 2 = J −1 
1 

(
B f t + �̄x t−1 + ρA x f (I + 2 ρθ2 �v A f f ) 

−1 
� f t 

)
. 

(B.9)

Plugging Eq. (B.9) into V t gives the following: 

 xx = �̄ − �̄T J −1 
1 �̄, (B.10)

 x f = �̄J −1 
1 (B + ρA x f (I + 2 ρθ2 �v A f f ) 

−1 �) , (B.11)

 f f = 

1 

2 

( ̄�−1 A x f ) 
T J 1 ( ̄�

−1 A x f ) + ρ�T A f f (I + 2 ρθ2 �v A f f ) 
−1 �. 

(B.12)

ppendix C. Proof of Proposition 2 

Rearranging Eq. (B.9) yields: 

(γ + θ1 ) �u + �̄ + ρA xx 

)
x ∗t = B f t + �̄x t−1 

 ρA x f (I + 2 ρθ2 �v A f f ) 
−1 � f t − ρ2 θ2 A x f (�

−1 
v + 2 ρθ2 A f f ) 

−1 A 

T 
x f 

x ∗t 
 B f t + �̄x t−1 + ρA x f ̃

 E ∗t ( f t+1 ) , 

(C.1)

here ˜ E ∗t (·) is the conditional expectation operator under the

orst-case scenario. Thus, the optimal strategy is 

 

∗
t = 

(
I − (κ + �̄) 

−1 
κ
)

x t−1 + (κ + �̄) −1 κ · ai m t , (C.2)

here 

= (γ + θ1 ) �u + ρA xx , 

i m t = κ−1 (B f t + ρA x f ̃
 E ∗t ( f t+1 )) . 

Next, we take θ1 as an example to show that the second part

f Proposition 2 holds. 

Suppose that at t + 1 , for the ambiguity aversion coefficients

 < θ (1) 
1 

< θ (2) 
1 

, the value function V t+1 satisfies V 
θ (1) 

1 
t+1 

( x t , f t+1 ) ≥
 

θ (2) 
1 

t+1 
( x t , f t+1 ) for all ( x t , f t+1 ) . Then, for any given ( x t , f t+1 ) and

 u,t+1 , the following is true: 

˜ 
 t 

(
x T t u t+1 + 

1 

2 θ (1) 
1 

e T u,t+1 �
−1 
u e u,t+1 + 

1 
2 θ2 

e T v ,t+1 �
−1 
v e v ,t+1 + ρV 

θ (1) 
1 

t+1 

)
˜ E t 

(
x T t u t+1 + 

1 

2 θ (2) 
1 

e T u,t+1 �
−1 
u e u,t+1 + 

1 
2 θ2 

e T v ,t+1 �
−1 
v e v ,t+1 + ρV 

θ (2) 
1 

t+1 

)
. 

(C.3)

When minimizing both sides with respect to e u,t+1 , the di-

ection of Inequality ( C.3 ) does not change. This holds true,

hen maximizing both sides with respect to x t . Thus, we have

 

θ (1) 
1 

t ( x t−1 , f t ) ≥ V 
θ (2) 

1 
t ( x t−1 , f t ) for any ( x t−1 , f t ) . Given Eq. (B.3) , we

an obtain the following inequalities: 

 

θ (1) 
1 

xx ≤ A 

θ (2) 
1 

xx , A 

θ (1) 
1 

f f 
≥ A 

θ (2) 
1 

f f 
. (C.4)

Similarly, we can prove that the above inequalities hold true for

. Thus, the result (ii) in Proposition 2 follows immediately. 
2 
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ppendix D. Proof of Proposition 3 

Consider the Markowitz’s mean-variance model with ambiguity

version but without transaction costs: 

ax 
x t 

min 

e u,t+1 

x T t 
˜ E t ( r t+1 ) − γ

2 

x T t �u x t + 

1 

2 θ1 

e T u,t+1 �
−1 
u e u,t+1 . 

Similar to the proof of Proposition 1 , we can prove that e ∗
u,t+1 

=
θ1 �u x t . Plugging it into the above optimization problem yields: 

ax 
x t 

x T t B f t − γ + θ1 

2 

x T t �u x t . 

The optimal solution is given by: 

arkowit z t = ( (γ + θ1 ) �u ) 
−1 

B f t . (D.1) 

Then, the aim portfolio can be rewritten as: 

i m t = κ−1 
(
(κ − ρA xx ) Markowit z t + ρA xx 

(
A 

−1 
xx A x f ̃

 E ∗t ( f t+1 ) 
))

. 

(D.2) 

Further, we note that: 

˜ E ∗t (ai m t+1 ) = 

(
B + ρA x f �

)
˜ E ∗t ( f t+1 ) + ρA x f ̃

 E ∗t (e ∗v ,t+2 ) 

= 

(
B + ρA x f (I + 2 ρθ2 �v A f f ) 

−1 
�

)
˜ E ∗t ( f t+1 ) 

−ρ2 θ2 A x f (�
−1 
v + 2 ρθ2 A f f ) 

−1 A 

T 
x f 

˜ E ∗t (x ∗t+1 ) , 

(D.3) 

r 

˜ E ∗t (ai m t+1 ) = J 1 �̄
−1 A x f ̃

 E ∗t ( f t+1 ) − ( J 1 − κ − �̄) ̃  E ∗t (x ∗t+1 ) . (D.4)

Given Eq. (18) , we have: 

˜ 
 

∗
t (x ∗t+1 ) = x ∗t + �̄−1 A xx ( ( A xx ) 

−1 A x f ̃
 E ∗t ( f t+1 ) − x ∗t ) . (D.5)

Substituting Eq. (D.5) into Eq. (D.4) yields: 

˜ E ∗t (ai m t+1 ) = (κ + �̄) ̄�−1 A x f ̃
 E ∗t ( f t+1 ) − ( J 1 − κ − �̄) J −1 

1 �̄x ∗t . 

(D.6) 

Thus, we can obtain the conclusion (ii) in Proposition 3: 

 

−1 
xx A x f ̃

 E ∗t ( f t+1 ) = A 

−1 
xx �̄(κ + �̄) −1 

(
κ ˜ E ∗t (ai m t+1 ) 

+ ( J 1 − κ − �̄) J −1 
1 

�̄x ∗t 
)

= (κ + A xx − κ J −1 
1 

�̄) −1 
(
κ ˜ E ∗t (ai m t+1 ) + ( A xx − κ J −1 

1 
�̄) x ∗t 

)
. 

Meanwhile, it is easy to prove that if there is no ambiguity aver-

ion to return predictors, then 

 xx − κ J −1 
1 �̄ = 0 . 

ppendix E. Proof of Proposition 4 

According to Eqs. (16) and (B.6) , the aim portfolio can be writ-

en as: 

i m t = κ−1 
(
B f t + ρA x f (� f t + e ∗v ,t+1 ) 

)
= κ−1 

(
J 1 �̄

−1 A x f f t − ( J 1 − κ − �̄) x ∗t 
)
. 

(E.1) 

Substituting Eqs. (18) and (B.11) into Eq. (E.1) yields: 

i m t = κ−1 
(
(κ + �̄) J −1 

1 K f f t + ( J 1 − κ − �̄) J −1 
1 K x x t−1 

)
, (E.2) 

here 

 f = B + ρA x f (I + 2 ρθ2 �v A f f ) 
−1 �, 

 x = −�̄. 

This is the conclusion (i) in Proposition 4 . 
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